Article contents
Photoperiodic requirements for rapid growth in young male red deer
Published online by Cambridge University Press: 02 September 2010
Abstract
Winter growth of young male red deer can be increased by exposure to 16 h of light (L) and 8 h of dark (D) per day (16L: 8D). This study tested the duration of photoperiod required for this growth response, determined if the time to reach slaughter weight can be reduced and monitored plasma IGF-1, prolactin and reproductive development. Fifty male calves were allocated to five equal groups. Four groups were housed indoors and for 33 weeks from the winter solstice (22 June, southern hemisphere) until 11 February were placed under either 16L: 8D (16L), 13·25L: 10·75D (13L), 10·751:13·25D (111) or 8L: 16D (8L) photoperiods. The fifth group of deer (OC) remained outside in a gravelled enclosure. All groups were given a pelleted diet ad libitum. Group food intake was recorded daily, individual live weight was measured weekly and testes diameter and blood samples taken at weekly or 2-week intervals.
Plasma prolactin concentrations in 16L increased within 4 weeks of treatment and were different (P < 0·001) between groups from 14 August to 4 September. IGF-1 increased in both 16L and 13L 4 weeks after treatments and then increased further in 16L above that of 13L (P < 0·01). All groups grew at the same rate for the first 7 weeks. 16L then gained more weight (P < 0·001) than the other groups over the next 19 weeks (50·7 kg v. 38·5 for 13L, 35·7 for 11L, 37·0 for 8L and 37·4 for OC; s.e.d. 3·76). Food intake was positively related to growth rate in a similar way among the inside groups (P < 0·001), however there was a higher energy requirement outdoors (P < 0·05). A target live weight for slaughter of 95 kg was reached 7 weeks earlier for 16L than the other groups (P < 0·01). Testes diameter of 16L was larger than in the other groups from 13 November until 24 December (P < 0·001). The growth oflSL slowed from 1 January while that of OC increased and the live weight ofOC was equal to 16L by the end of the experiment. OC also had the largest testes diameter from 5 February onwards (P < 0·01). The live-weight increase in OC was associated with increases in both prolactin and IGF-1 levels.
This study confirmed that 16L: 8D stimulates rapid growth of young male red deer during winter for sufficient time to achieve an earlier slaughter date. The live-weight advantage was lost by late summer however. The increased growth rate was mediated by food intake and associated with increases in IGF-1 and prolactin and earlier reproductive development. Photoperiods of 13 h of light per day or less did not stimulate growth and increases in IGF-1 and prolactin were of a lower amplitude than under 16L: 8D.
- Type
- Research Article
- Information
- Copyright
- Copyright © British Society of Animal Science 1998
References
- 4
- Cited by