Crossref Citations
This article has been cited by the following publications. This list is generated based on data provided by
Crossref.
Canavesi, F.
Schaeffer, L. R.
Burnside, E. B.
Jansen, G. B.
and
Rozzi, P.
1995.
Sire‐by‐herd interaction effect when variances across herds are heterogeneous. I. Expected genetic progress.
Journal of Animal Breeding and Genetics,
Vol. 112,
Issue. 1-6,
p.
95.
Canavesi, F.
Schaeffer, L. R.
Burnside, E. B.
Jansen, G. B.
and
Rozzi, P.
1995.
Sire‐by‐herd interaction effect when variances across herds are heterogeneous. II. Within‐herd variance‐component estimates.
Journal of Animal Breeding and Genetics,
Vol. 112,
Issue. 1-6,
p.
107.
Woolaston, R. R.
and
Piper, L. R.
1996.
Selection of Merino sheep for resistance to Haemonchus contortus: genetic variation.
Animal Science,
Vol. 62,
Issue. 3,
p.
451.
Meuwissen, T.H.E.
De Jong, G.
and
Engel, B.
1996.
Joint Estimation of Breeding Values and Heterogeneous Variances of Large Data Files.
Journal of Dairy Science,
Vol. 79,
Issue. 2,
p.
310.
Ibáñez, M.A.
Carabaño, M.J.
Foulley, J.L.
and
Alenda, R.
1996.
Heterogeneity of herd-period phenotypic variances in the Spanish Holstein-Friesian cattle: Sources of heterogeneity and genetic evaluation.
Livestock Production Science,
Vol. 45,
Issue. 2-3,
p.
137.
Dodenhoff, J.
and
Swalve, H.H.
1998.
Heterogeneity of variances across regions of northern Germany and adjustment in genetic evaluation.
Livestock Production Science,
Vol. 53,
Issue. 3,
p.
225.
Ibáñez, M.A.
Carabaño, M.J.
and
Alenda, R.
1999.
Identification of sources of heterogeneous residual and genetic variances in milk yield data from the Spanish Holstein-Friesian population and impact on genetic evaluation.
Livestock Production Science,
Vol. 59,
Issue. 1,
p.
33.
van Heelsum, A.M
Lewis, R.M
Haresign, W
Williams, S.P
and
Davies, M.H
2001.
Non-normality in carcass quality measurements and effects on the genetic evaluation of sheep.
Livestock Production Science,
Vol. 69,
Issue. 2,
p.
113.
Campelo, J.E.G.
Lopes, P.S.
Torres, R.A.
Silva, L.O.C.
Euclydes, R.F.
Araújo, C.V.
and
Pereira, C.S.
2003.
Influência da heterogeneidade de variâncias na avaliação genética de bovinos de corte da raça Tabapuã.
Arquivo Brasileiro de Medicina Veterinária e Zootecnia,
Vol. 55,
Issue. 6,
p.
685.
Strabel, Tomasz
Jankowski, Tomasz
and
Jamrozik, Janusz
2006.
Adjustments for heterogeneous herd-year variances in a random regression model for genetic evaluations of Polish Black-and-White cattle.
Journal of Applied Genetics,
Vol. 47,
Issue. 2,
p.
125.
Hickey, J.M.
Keane, M.G.
Kenny, D.A.
Cromie, A.R.
Amer, P.R.
and
Veerkamp, R.F.
2007.
Heterogeneity of Genetic Parameters for Calving Difficulty in Holstein Heifers in Ireland.
Journal of Dairy Science,
Vol. 90,
Issue. 8,
p.
3900.
Tapia, Elmer Francisco Valencia
Ramos, Alcides de Amorim
Wechsler, Francisco Stefano
Lui, Jeffrey Frederico
Grupioni, Natalia Vinhal
Ramos, Salvador Boccaletti
and
Munari, Danísio Prado
2011.
Heterogeneidade dos componentes de variância na produção de leite e seus efeitos nas estimativas de herdabilidade e repetibilidade.
Ciência Rural,
Vol. 41,
Issue. 6,
p.
1070.
Lembeye, F.
Lopez-Villalobos, N.
Burke, J.L.
and
Davis, S.R.
2016.
Estimation of genetic parameters for milk traits in cows milked once- or twice-daily in New Zealand.
Livestock Science,
Vol. 185,
Issue. ,
p.
142.
Selle, Maria L.
Steinsland, Ingelin
Powell, Owen
Hickey, John M.
and
Gorjanc, Gregor
2020.
Spatial modelling improves genetic evaluation in smallholder breeding programs.
Genetics Selection Evolution,
Vol. 52,
Issue. 1,
Wahinya, Peter K.
Jeyaruban, Gilbert
Swan, Andrew
and
Magothe, Thomas
2020.
Estimation of genetic parameters for milk and fertility traits within and between low, medium and high dairy production systems in Kenya to account for genotype‐by‐environment interaction.
Journal of Animal Breeding and Genetics,
Vol. 137,
Issue. 5,
p.
495.
Negussie, Enyew
González-Recio, Oscar
Battagin, Mara
Bayat, Ali-Reza
Boland, Tommy
de Haas, Yvette
Garcia-Rodriguez, Aser
Garnsworthy, Philip C.
Gengler, Nicolas
Kreuzer, Michael
Kuhla, Björn
Lassen, Jan
Peiren, Nico
Pszczola, Marcin
Schwarm, Angela
Soyeurt, Hélène
Vanlierde, Amélie
Yan, Tianhai
and
Biscarini, Filippo
2022.
Integrating heterogeneous across-country data for proxy-based random forest prediction of enteric methane in dairy cattle.
Journal of Dairy Science,
Vol. 105,
Issue. 6,
p.
5124.
Du, Manuel
Bernstein, Richard
Hoppe, Andreas
Bienefeld, Kaspar
and
de los Campos, G
2022.
Influence of model selection and data structure on the estimation of genetic parameters in honeybee populations.
G3 Genes|Genomes|Genetics,
Vol. 12,
Issue. 2,