Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-19T01:29:43.009Z Has data issue: false hasContentIssue false

Energetic requirements and physiological adaptation of draught horses to ploughing work

Published online by Cambridge University Press:  02 September 2010

R. Pérez
Affiliation:
Departamento de Ciencias Clínicas, Facultad de Medicina Veterinaria, Universidad de Concepción, Campus Chillán, Casilla 537, Chillán, Chile
S. Valenzuela
Affiliation:
Departamento de Producción Animal, Facultad de Agronomia, Universidad de Concepción, Campus Chillán, Casilla 537, Chillán, Chile
V. Merino
Affiliation:
Departamento de Ciencias Clínicas, Facultad de Medicina Veterinaria, Universidad de Concepción, Campus Chillán, Casilla 537, Chillán, Chile
I. Cabezas
Affiliation:
Departamento de Ciencias Clínicas, Facultad de Medicina Veterinaria, Universidad de Concepción, Campus Chillán, Casilla 537, Chillán, Chile
M. García
Affiliation:
Departamento de Ciencias Clínicas, Facultad de Medicina Veterinaria, Universidad de Concepción, Campus Chillán, Casilla 537, Chillán, Chile
R. Bou
Affiliation:
Departamento de Ciencias Clínicas, Facultad de Medicina Veterinaria, Universidad de Concepción, Campus Chillán, Casilla 537, Chillán, Chile
P. Ortiz
Affiliation:
Departamento de Ciencias Clínicas, Facultad de Medicina Veterinaria, Universidad de Concepción, Campus Chillán, Casilla 537, Chillán, Chile
Get access

Abstract

Five Chilean crossbred draught horses were used to study variation in work performance and biochemical and physiological parameters whilst working with a mould board plough (36 kg) for 6 h/day. The draught force, distance travelled, work done and the estimated extra energy for work were determined for each horse. The results showed that the horses used only 68·0 (s.e. 1·9)% of the total available working time ploughing a mean area of 3283 (s.e. 168) m2 with a mean depth and width of furrow of 12·6 and 22·3 cm, respectively. Estimated daily energy expenditure by the horses during work was 2·24 (s.e. 0·02) times maintenance requirements. The small changes observed in the physiological variables: heart rate, respiratory rate, packed cell volume, haemoglobin concentration and enzyme activity of creatine kinase, lactate dehydrogenase and aspartate amino transferase, showed that the horses were exercised under submaximal conditions. However, the significant increase in blood cortisol concentrations showed that horses experienced some degree of stress during ploughing work. The significant increase in blood triglycerides concentration observed after each period of work seems to demonstrate that fat mobilization is an important metabolic pathway as an energy supply for the working muscles during prolonged and low speed draught work.

Type
Research Article
Copyright
Copyright © British Society of Animal Science 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bansal, R. K., El Gharras, O. and Hamilton, J. H. 1992. Performance of draft animals at work in Morocco: draftability and power output. Agricultural Mechanization in Asia, Africa and Latin America 23: 6570.Google Scholar
Brody, S. 1945. Bioenergetics and growth. With special reference to the efficiency complex in domestic animals. Coliier McMillan, London.Google Scholar
Engelhardt, W. V. 1977. Cardiovascular effects of exercise and training in horses. Advances in Veterinary Science and Comparative Medicine 21:173205.Google Scholar
Evans, D. L. 1985. Cardiovascular adaptations to exercise and training. Veterinary Clinics of North America Equine Practice 1: 513528.Google Scholar
Goe, M. R. 1983. Situatión actual de las imvestigaciones sobre traction animal. Revista Mundial de Zootecnia 45: 217.Google Scholar
Gottlieb, M., Essen-Gustavsson, B. and Skoglund-Walberg, H. 1989. Blood and muscle metabolic responses to draught work of varying intensities and duration in horses. Research in Veterinary Science 47:102109.CrossRefGoogle ScholarPubMed
Hunter, J. B. and Critz, J. B. 1971. Effect of training on plasma enzyme levels in man. Journal of Applied Physiology 31:2023.CrossRefGoogle ScholarPubMed
Jones, R. S., Lawrence, T. L. J., Veevers, A., Cleave, N. and Hall, J. 1989. Accuracy of prediction of liveweight of horses from body measurements. Veterinary Record 125: 549553.CrossRefGoogle ScholarPubMed
Kebede, A. and Pathak, B. S. 1987. Draught characteristics of Ethiopian oxen. Draught Animal News 8:1213.Google Scholar
Lawrence, P. R. and Pearson, A. R. 1985. Factors affecting the measurement of draught force, work output and power of oxen. Journal of Agricultural Science, Cambridge 105: 703714.CrossRefGoogle Scholar
Lawrence, P. R. and Pearson, A. 1989. Measurement of energy expenditure in working animals: methods for different conditions. ACIAR proceedings, series no. 27, pp. 155165. ICIAR, Canberra, Australia.Google Scholar
Lawrence, P. R. and Smith, A. J. 1988. A better beast of burden. New Scientist 21:4953.Google Scholar
Lawrence, P. R., Sosa, R. and Campbell, I. 1989. The underlying ‘resting’ energy consumption of oxen during work. Proceedings of the Nutrition Society 48:154A.Google Scholar
Lucke, J. N. and Hall, G. M. 1978. Biochemical changes during a 50-mile endurance ride. Veterinary Record 102: 356358.Google Scholar
Lucke, J. N. and Hall, G. M. 1980a. Long distance exercise in the horse: Golden Horse Shoe Ride 1978. Veterinary Record 106: 405407.Google Scholar
Lucke, J. N. and Hall, G. M. 1980b. Further studies on the metabolic effects of long distance riding: Golden Horse Shoe Ride 1979. Equine Veterinary Journal 12:189192.Google Scholar
McCarthy, R. N., Jeffcott, L. B., Funder, J. W., Fullerton, M. and Clarke, I. J. 1991. Plasma beta-endorphin and adrenocorticotrophin in young horses in training. Australian Veterinary Journal 68: 359361.CrossRefGoogle ScholarPubMed
McMicken, D. F. 1983. An energetic basis of equine performance Equine Veterinary Journal 15:123133.Google Scholar
Matthewman, R. W. and Dijkman, J. T. 1993. The nutritional requirements of draught animals. Journal of Agricultural Science, Cambridge 121: 297306.Google Scholar
Muylle, E., Hende, C. van den, Nuytten, J., Deprez, P., Vlaminck, K. and Oyaert, W. 1984. Potassium concentration in equine red blood cells: normal values and correlation with potassium levels in plasma. Equine Veterinary Journal 16:447449.Google Scholar
O'Neil, D. H. 1989. Instrumentation for the measurement of draught animal performance. International Livestock Centre for Africa Bulletin 33:28.Google Scholar
O'Neil, D. H. and Kemp, D. C. 1989. A comparison of work outputs of draught oxen. Journal of Agricultural Engineering Research 43:3344.CrossRefGoogle Scholar
Pagan, J. D. and Hintz, H. F. 1986a. Equine energetics. I: Relationship between body weight and energy requirements in horses. Journal of Animal Science 63: 815821.Google Scholar
Pagan, J. D. and Hintz, H. F. 1986b. Equine energetics. II. Energy expenditure in horses during submaximal exercise. Journal of Animal Science 63: 822830.CrossRefGoogle ScholarPubMed
Pearson, R. A. 1985. Physiological changes associated with work: some lessons from the horse. In Draught animal power for production (ed. Copeland, J. W.). ACIAR proceedings, series N — 10, pp. 5156. ICIAR, Canberra, Australia.Google Scholar
Pearson, R. A. 1989. A comparison of draught cattle (Bos indicus) and buffaloes (Bubalus bubalis) carting loads in hot conditions. Animal Production 49: 355363.Google Scholar
Pearson, R. A. 1991. A comparison of Jersey crossbreds and local oxen as draught animals in the eastern hills of Nepal. Asian Journal of Animal Science 4:3140.CrossRefGoogle Scholar
Pearson, R. A. and Dijkman, J. T. 1994. Nutritional implications of work in draught animals. Proceedings of the Nutrition Society 53:169179.CrossRefGoogle ScholarPubMed
Pearson, R. A., Lawrence, P. R. and Ghimire, C. 1989. Factors influencing the work done by draught oxen: a study in the eastern hills of Nepal. Animal Production 49: 345353.Google Scholar
Pérez, R., Recabarren, S. E., Islas, A., Cárdenas, H., Mora, G., Cañdia, B., Ibanez, M. and Hetz, E. 1991. Cambios hematológicos y en los niveles de cortisol del caballo mestizo de tiro en respuesta a la tracción de carga. Agrociencia 7:2331.Google Scholar
Pérez, R., Recabarren, S. E., Islas, A., Jara, C., Valdés, P. and Hetz, E. 1992a. Glucosa, ácido láctico y equilibrio ácido-base en equinos de tiro sometidos a ejecicio de tracción. Archivos de Medicina Veterinaria 24: 4351.Google Scholar
Pérez, R., Recabarren, S. E., Valdés, P. and Hetz, E. 1992b. Biochemical and physiological parameters and estimated work output in draught horses pulling loads for long periods. Veterinary Research Communications 16: 231246.CrossRefGoogle ScholarPubMed
Pimentel, D. 1992. Energy inputs in production agriculture. In Energy in farm production (ed. Fluch, R. C.). Elsevier Science Publishers, Amsterdam.Google Scholar
Pösa, A. R., Viljanen-Tarifa, E., Soveri, T. and Oksanen, H. E. 1989. Exercise induced transient hyperlipidemia in the race horse. Journal of Veterinary Medicine, Series A 36: 603611.Google Scholar
Richards, J. J. and Lawrence, P. R. 1984. The estimation of energy expenditure from heart rate measurements in working oxen and buffalo. Journal of Agricultural Science, Cambridge 102: 711717.Google Scholar
Rose, R. J. 1983. An evaluation of heart rate and respiratory rate recovery for assessment of fitness during endurance rides. In Equine exercise physiology (ed. Snow, D. H., Persson, S. G. B. and Rose, R. J.). Granta Editions, Cambridge.Google Scholar
Rose, R. J. 1986a. Endurance exercise in the horse: a review. Parti. British Veterinary Journal 142: 532541.Google Scholar
Rose, R. J. 1986b. Endurance exercise in the horse: a review. Part II. British Veterinary Journal 142: 542552.Google Scholar
Rose, R. J., Hodgson, D. R., Sampson, D. and Chan, W. 1983. Changes in plasma biochemistry in horses competing in a 160 km endurance ride. Australian Veterinary Journal 60: 132136.Google Scholar
Rose, R. J., Ilkiw, J. E., Arnold, K. S., Backhouse, J. W. and Sampson, D. 1980. Plasma biochemistry in the horse during 3 day event competition. Equine Veterinary Journal 12: 132136.Google Scholar
Sims, B. G. and Aragón, A. 1989. Draft oxen energy expenditure: a Mexican case-study. Agricultural Mechanization in Asia, Africa and Latin America 20: 914.Google Scholar
Smith, A. J. 1990. Using science to understand the biological constraints that limit work animals productivity. In Animal traction for agricultural development. West African Animal Traction Network, 1988 workshop (ed. Starkey, P. and Faye, A.). West African Animal Traction Network, pp. 156160.Google Scholar
Snow, D. H., Billah, A. and Ridha, A. 1988. Effects of maximal exercise on the blood composition of the racing camel. Veterinary Record 123:311312.CrossRefGoogle ScholarPubMed
Snow, D. H. and Harris, P. 1988. Enzymes as markers for evaluation of physical fitness and training of racing horses. In Enzymes, tools and targets. Advances in clinical enzymology, vol. 6 (ed. Goldberg, D. M., Moss, D. W., Schmidt, E., et al), pp. 241258. Basel, Karger.Google Scholar
Snow, D. H., Kerr, M. G., Nimmo, M. A. and Abbot, E. M. 1982. Alterations in blood, sweat, urine and muscle composition during prolonged exercise in the horse. Veterinary Record 110: 377384.CrossRefGoogle ScholarPubMed
Wilson, R. G., Isler, R. B. and Thornton, J. R. 1983. Heart rate, lactic acid production and speed during standardised exercise test in standardbred horses. In Equine exercise physiology (ed. Snow, D. H., Persson, S. G. B. and Rose, R. J.), pp. 487496. Granta Editions, Cambridge.Google Scholar