Published online by Cambridge University Press: 18 August 2016
The effects of energy source and level of digestible undegraded protein (DUP) in concentrates on silage intake and performance of lactating dairy cows, offered one of a range of grass silages differing in digestibility and intake characteristics, were evaluated in a partially balanced change-over design experiment involving 48 cows. Four silages were prepared using differing management practices prior to and during ensiling. All silages were treated with an inoculant additive. For silages A, В, С and D, dry matter (DM) concentrations were 199, 320, 313 and 223 (s.e. 4.6) g/kg, pH values 3.82, 4.03, 4·03 and 5·27 (s.e. 0.056), ammonia nitrogen (N) concentrations 58, 122, 66 and 356 (s.e. 13.2) g/kg total N and in vivo DM apparent digestibilities 077, 0.75 , 0.60 and 0.60 (s.e. 0·013) respectively. When offered as the sole diet to 12 dairy cows in a partially balanced change-over design experiment, silage DM intakes were 14.7, 14.7, 12.7 and 10.5 (s.e. 0·36) kg/day respectively for silages А, В, С and D. Six concentrates containing three starch concentrations, each at two levels of DUP, were formulated to have similar concentrations of crude protein, metabolizable energy (ME) and fermentable ME. For the low and high starch concentrates and low and high levels of DUP, starch concentrations were 22·5 and 273 g/kg DM and DUP levels were 44 and 60 g/kg DM respectively. Silages were offered ad libitum supplemented with 10 kg fresh concentrate per head per day. For silages А, В, С and D, DM intakes were 10.8, 11.2, 10·7 and 9·1 (s.e. 0·26) kg/day and milk yields 29.0, 27.6, 27.1 and 25.7 (s.e. 0.69) kg/day respectively. With the exception of milk protein concentration there were no significant (P > 0.05) silage type by concentrate energy source and/or level of DUP interactions on silage intake, milk output or composition. Concentrate energy source had no effect (P > 0.05) on silage DM intake, the yields of milk, fat, protein or fat plus protein or milk fat concentration. However, increasing starch concentration increased milk protein concentration (P < 0·001), urinary allantoin concentration (P < 0·01) and diet apparent digestibility (P < 0·001). Altering concentrate DUP level had no effect (P > 0·05) on silage DM intake, yields of milk, protein, fat or fat plus protein, milk f at concentrations or diet apparent digestibility. Increasing the level of DUP decreased milk protein (P < 0·05) concentration. It is concluded that with silages of varying digestibility, fermentation and intake characteristics, there were no concentrate energy source and/or level of DUP by silage type interactions on silage intake, milk yield or composition, or diet apparent digestibility with the exception of a silage type by concentrate level of DUP interaction on milk protein concentration. With out-of-parlour feeding of concentrates the results of the present study suggest that there is no evidence to justify the formulation of concentrates differing in energy source or level of DUP to complement individual silage types.