Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-24T08:34:56.508Z Has data issue: false hasContentIssue false

Effects of age on plasma metabolites and hormones in finishing Belgian Blue double-muscled cull females

Published online by Cambridge University Press:  18 August 2016

J.-F. Cabaraux*
Affiliation:
Nutrition Unit, B43
I. Dufrasne
Affiliation:
Experimental Station, B39, Department of Animal Production, Faculty of Veterinary Medicine, University of Liège, Sart-Tilman, 4000 Liège, Belgium
L. Istasse
Affiliation:
Nutrition Unit, B43
J.-L. Hornick
Affiliation:
Nutrition Unit, B43
*
Get access

Abstract

Two groups of 12 Belgian Blue double-muscled cull females were used successively in a 2-year repeated experiment and divided into three groups according to age, allowing four animals per group each year. The aim of the trial was to relate, during the finishing period, the metabolic and endocrine parameters with age. Females were fattened with a diet based on maize silage and were blood sampled on several occasions. The average daily gain (ADG) decreased with the age of the cows. Plasma glucose and triglycerides decreased also with age while the youngest females showed lower concentrations of urea than those older. The composition of plasma non-esterified fatty acids also differed considerably between groups. The hormones that best related with ADG were IGF-1 and insulin. Plasma concentrations of thyroid hormones were lower in the oldest animals. No difference between groups was found for GH. Heifers presented lower concentrations of GH and IGF-1 than those reported elsewhere in fattening bulls of the same breed. It may be concluded that in Belgian Blue double-muscled females, glucose, IGF-1 and insulin are good indicators of the growth potential. Young adult cows presented intermediate characteristics of metabolic and endocrine status that were close either to younger or to older cows.

Type
Growth, development and meat science
Copyright
Copyright © British Society of Animal Science 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Agabriel, J., Giraud, J. M. and Petit, M. 1986. Détermination et utilisation de la note d’état d’engraissement en élevage allaitant. Bulletin Technique du Centre de Recherches Zootechniques et Vétérinaires de Theix, INRA 66: 4350.Google Scholar
Bass, J. J., Oldham, J. M., Hodgkinson, S. C., Fowke, P. J., Sauerwein, H., Molan, P., Breier, B. H. and Gluckman, P. D. 1991. Influence of nutrition and bovine growth hormone (GH) on hepatic GH binding, insulin-like growth factor-I and growth of lambs. Journal of Endocrinology 128: 181186.Google Scholar
Blum, J. W., Schnyder, W., Kunz, P. L., Blom, A. K., Bickel, H. and Schürch, A. 1985. Reduced and compensatory growth: endocrine and metabolic changes during food restriction and refeeding in steers. Journal of Nutrition 115: 417424.Google Scholar
Cabaraux, J. F., Hornick, J. L., Dotreppe, O., Dufrasne, I., Clinquart, A. and Istasse, L. 2004. Effects of the calving number on animal performance, carcass and meat composition in finishing Belgian Blue double-muscled culled females. Livestock Production Science In press.Google Scholar
Cabello, G. and Wrutniak, C. 1989. Thyroid hormone and growth: relationships with growth hormone effects and regulation. Reproduction, Nutrition, Development 29: 387402.Google Scholar
Closset, J., Maghuin-Rogister, G., Minh, Tran Quang, Lambot, O. and Hennen, G. 1986. Immunological growth promotion of bulls by a synthetic vaccine inhibiting the endogeneous somatostatin. Proceedings of the 32nd European meeting of meat research workers, Gent, p. 19.Google Scholar
Daughaday, W. H., Yanow, C. E. and Kapadia, M. 1986. Insulin-like growth factors-I and -II in maternal and fetal guinea pig serum. Endocrinology 119: 490494.Google Scholar
Dumont, R., Roux, M., Agabriel, J., Touraille, C., Bonnemaire, J., Malterre, C. and Robelin, J. 1991. Engraissement des vaches de réforme de race Charolaise: facteurs de variation des performances zootechniques, de la composition tissulaire des carcasses et de la qualité organoleptique de la viande. INRA Productions Animales 4: 271286.Google Scholar
Eenaeme, C. van, Istasse, L., Gabriel, A., Baldwin, P., Clinquart, A., Dufrasne, I. and Bienfait, J. -M. 1989. Measurement of muscle protein synthesis and turnover at the cellular level in young bulls. Mededelingen aan de Faculteit der Landbouwwetenschappen, Rijksuniversiteit Gent 54: 13371342.Google Scholar
Eenaeme, C. van, Minet, V., Raskin, P., Dufrasne, I., Clinquart, A., Hornick, J. -L., Diez, M., Mayombo, P., Baldwin, P. and Istasse, L. 1997. Technical data on Belgian Blue double muscled bulls. In Belgian Blue bulls: their management for growing and finishing. An assessment of their performance and of carcass and meat quality, pp. 2340. Presses de la Faculté de Médecine Vétérinaire de l’Université de Liège, Liège.Google Scholar
Etherton, T. D. 1991. The role of insulin-like growth factors and the IGF-binding proteins in growth and metabolism. In Growth regulation in farm animals – advances in meat research – vol. 7. (ed. Pearson, A. M. and Dutson, T. R.), pp. 343372. Elsevier Applied Science, London.Google Scholar
Grizard, J., Dardevet, D., Papet, I., Mosoni, L., Patureau Mirand, P., Attaix, D., Tauveron, I., Bonin, D. and Arnal, M. 1995. Nutrient regulation of skeletal muscle protein metabolism in animals. The involvement of hormones and substrates. Nutrition Research Review 8: 6791.Google Scholar
Hannon, K. and Trenkle, A. 1991. Relationship of thyroid status to growth hormone and insulin-like growth factor-1 (IGF-1) in plasma and IGF-1 mRNA in liver and skeletal muscle of cattle. Domestic Animal Endocrinology 8: 595600.Google Scholar
Henry, R. J., Cannon, D. C. and Winkelman, J. W. 1974. Clinical chemistry. Principles and technics. Harper & Row, New York.Google Scholar
Hornick, J.-L., Eenaeme, C. van, Diez, M., Minet, V. and Istasse, L. 1997. Comparison of hindquarter metabolite uptakes in Belgian Blue double muscled bulls at maintenance or during fattening. Journal of Animal Science 75: 33313342.Google Scholar
Hornick, J. -L., Eenaeme, C. van, Diez, M., Minet, V. and Istasse, L. 1998. Different periods of feed restriction before compensatory growth in Belgian Blue bulls. II. Plasma metabolites and hormones. Journal of Animal Science 76: 260271.Google Scholar
Ishibashi, M., Ushinohama, K., Kamimura, S. and Hamana, K. 1999. Blood concentrations of growth hormone, insulin-like growth factor-1, thyroid hormone and vitamin A in Japanese Black calves with retarded growth. Journal of Japan Veterinary Medical Association 52: 427430.Google Scholar
Lobley, G. E., Connell, A. and Buchnan, V. 1987. Effect of food intake on protein and energy metabolism in finishing beef steers. British Journal of Nutrition 57: 457465.Google Scholar
Malterre, C., Robelin, J., Agabriel, J. and Bordes, P. 1989. Engraissement des vaches de réforme de race Limousine. INRA Productions Animales 2: 325334.Google Scholar
Metzler, D. E. 1977. Biochemistry – the chemical reactions of living cells. Academic Press, New York.Google Scholar
Minet, V., Eenaeme, C. van, Raskin, P., Dufrasne, I., Clinquart, A., Hornick, J.-L., Diez, M., Mayombo, P., Baldwin, P., Bienfait, J. -M. and Istasse, L. 1996. Stratégies d’engraissement du taurillon Blanc Bleu Belge culard. Performances, qualité des carcasses et de la viande, approche métabolique et bilan économique. Ministère des Classes Moyennes et de l’Agriculture, Administration Recherche et Développement (DG6), Bruxelles.Google Scholar
Mosier, H. D. Jr 1981. Thyroid hormones. In Endocrine control of growth (ed. Daughaday, W. H.), pp. 2666. Elsevier, New York.Google Scholar
Müller, H. W. and Binz, K. 1982. Glass capillary gas chromatography of the serum fatty acids fraction via automatic injections of lipid extracts. Journal of Chromatography and Biomedical Applications 228: 7593.Google Scholar
Palmer, D. W. and Peters, J. T. 1969. Automated determination of free amino groups in serum and plasma using 2, 4, 6-trinitrobenzene sulfonate. Clinical Chemistry 19: 891901.Google Scholar
Schroeder, A. L., Bergen, W. G. and Merkel, R. A. 1990. Estimation of lean body mass (LBM), empty body protein (EBP) and skeletal muscle protein (SMP) from urinary creatinine excretion (UCE) in beef steers. Journal of Animal Science 68: (suppl. 1) 311.Google Scholar
Schwarz, F. J., Röpke, R., Schams, D. and Kirchgessner, M. 1992. Effects of sex and growth on plasma concentration of growth hormone, insulin-like growth factor-I and insulin in fattening Simmental cattle. Journal of Animal Physiology and Animal Nutrition 68: 263271.Google Scholar
Seashore, J. H., Huszar, G. and Davis, E. M. 1981. Urinary 3-methylhistidine/creatine ratio as a clinical tool: correlation between 3-methylhistidine excretion and metabolic and clinical states in healthy and stressed premature infants. Metabolism 30: 959969.Google Scholar
Service Public Fédéral. 2003a. Economie P. M. E., classes moyennes et energie, statistique et information economique. Statistiques agricoles. Service Public Fédéral, Bruxelles.Google Scholar
Service Public Fédéral. 2003b. Economie P. M. E., classes moyennes et energie, statistique et information economique. Recensement agricole au 15 mai 2002. Service Public Fédéral, Bruxelles.Google Scholar
Sirotkin, A. V., Svetlanska, M., Sommer, A., Makarevich, A. V., Szakacs, J. and Polacikova, M. 2002. Are IGF-1, thyroid hormones and metabolite concentrations in calf plasma associated with growth rate, sex and age? Journal of Animal and Feed Sciences 11: 265275.Google Scholar
Statistical Analysis Systems Institute. 2000. SAS/STAT user’s guide, version 8. SAS Inc., Cary, NC.Google Scholar
Taylor, P. L. 1987. Munro. Hormone pulse profile analysis. Elsevier, Amsterdam.Google Scholar
Trenkle, A. 1970. Plasma levels of growth-hormone, insulin and plasma proteins-bound iodine in finishing cattle. Journal of Animal Science 31: 389393.Google Scholar
Vernon, R. G. 1992. Control of lipogenesis and lipolysis. In Control of fat and lean deposition (ed. Buttery, P. J. Boorman, K. N. and Lindsay, D. B.), pp. 5981. Butterworth-Heinemann, Oxford.Google Scholar
Webb, K. E., Dirienzo, D. B. and Matthews, J. C. 1993. Symposium: nitrogen metabolism and amino acid nutrition in dairy cattle. Recent developments in gastrointestinal absorption and tissue utilization of peptides – a review. Journal of Dairy Science 76: 351361.Google Scholar