Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-24T13:41:21.413Z Has data issue: false hasContentIssue false

Effect of double-muscling in Belgian Blue young bulls on the intramuscular fatty acid composition with emphasis on conjugated linoleic acid and polyunsaturated fatty acids

Published online by Cambridge University Press:  18 August 2016

K. Raes
Affiliation:
Department of Animal Production, Faculty of Agricultural and Applied Biological Sciences, Ghent University, Proefhoevestraat 10, 9090 Melle, Belgium
D. Demeyer
Affiliation:
Department of Animal Production, Faculty of Agricultural and Applied Biological Sciences, Ghent University, Proefhoevestraat 10, 9090 Melle, Belgium
Get access

Abstract

The effect of double-muscling (DM) genotype (double-muscling, mh/mh; heterozygous, mh/+; normal, +/+) of Belgian Blue (BB) young bulls on the intramuscular fatty acid composition, in particular conjugated linoleic acid (CLA) and polyunsaturated fatty acids (PUFA) was examined in five different muscles. The relative fatty acid composition showed only minor differences between muscles within genotypes. However, the DM genotype had a large effect on both the intramuscular total fatty acid content and on the relative fatty acid composition. Across muscles, the mh/mh animals had a lower total fatty acid content compared with the +/+animals (907 v: 2656 mg/100 g muscle; P < 0·01) and a higher PUFA proportion in total fatty acids (27·5 v 11·3 g/100 g total fatty acids; P < 0001), resulting in a higher PUFA/saturated fatty acid ratio (0·55 v 0·18; P < 0·01) and a lower n-6/n-3 ratio (5·34 v. 6·17; P < 0·01). The heterozygous genotype was intermediate between the two homozygous genotypes. The relative CLA content was similar in the mh/mh and +/+ genotypes and approximated 0·4 to 0·5 g/100 g total fatty acids. From the data it is further suggested that differences in the metabolism of the n-3 and n-6 fatty acids could exist between DM genotypes.

Type
Growth, development and meat science
Copyright
Copyright © British Society of Animal Science 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Chin, S. F., Liu, W., Storkson, J. M., Ha, Y. L. and Pariza, M. W. 1992. Dietary sources of conjugated dienoic isomers of linoleic acid, a newly recognised class of anticarcinogens. Journal of Food Composition and Analysis 5: 185197.Google Scholar
Christie, W. W. 1973. Lipid analysis. Pergamon Press, New York.Google Scholar
Clinquart, A., Hornick, J. L., Eenaeme, C. van and Istasse, L. 1998. Influence du caractère culard sur la production et la qualité de la viande des bovins Blanc Bleu Belge. INRA Productions Animales 11: 285297.Google Scholar
Clinquart, A., Istasse, L., Eenaeme, C. van, Dufrasne, I., Hollo, V. and Bienfait, J. M. 1991. Soya oil in diet for growing fattening bulls: effects on animal performance and fatty acid composition. Animal Production 52: 591 (abstr. ).Google Scholar
Demeyer, D. I., Buysse, G. and Fiems, L. 1995a. Meat quality in double muscled animals. In Composition of meat in relation to processing, nutritional and sensory quality (ed. Lundström, K., Hansson, I. and Wiklund, E.), pp. 95102. ECCEAMST, Utrecht.Google Scholar
Demeyer, D. I., Nevel, C. van and Fiems, L. 1995b. Nutritional engineering of beef fat composition: motive, target and approach. In Composition of meat in relation to processing, nutritional and sensory quality (ed. Lundström, K., Hansson, I. and Wiklund, E.), pp. 1536. ECCEAMST, Utrecht.Google Scholar
Dugan, M. E. R., Aalhus, J. L., Schaefer, A. L. and Kramer, J. K. G. 1997. The effects of conjugated linoleic acid on pig feed conversion efficiency and fat to lean repartitioning. Canadian Journal of Animal Science 77: 723725.Google Scholar
Eichorn, J. M., Baily, C. M. and Blomquist, G. J. 1985. Fatty acid composition of muscle and adipose tissue from crossbred bulls and steers. Journal of Animal Science 61: 892902.Google Scholar
Eichorn, J. M., Coleman, L. J., Wakayama, E. J., Blomquist, C., Bailey, M. and Jenkins, T. G. 1986. Effects of breed type and restricted versus ad libitum feeding on fatty acid composition and cholesterol content of muscle and adipose tissue from mature bovine females. Journal of Animal Science 63: 781794.Google Scholar
Enser, M., Hallett, K., Hewitt, B., Fursey, G. A. J. and Wood, J. D. 1996. Fatty acid content and composition of English beef, lamb and pork at retail. Meat Science 42: 443456.CrossRefGoogle Scholar
Enser, M., Hallett, K., Hewitt, B., Fursey, G. A. J., Wood, J. D. and Harrington, G. 1998. Fatty acid content and composition of UK beef and lamb muscle in relation to production system and implications for human nutrition. Meat Science 49: 329341.CrossRefGoogle ScholarPubMed
Enser, M., Scollan, N. D., Choi, N. J., Kurt, E., Hallett, K. and Wood, J. D. 1999. Effect of dietary lipid on the content of conjugated linoleic acid (CLA) in beef muscle. Animal Science 69: 143146.CrossRefGoogle Scholar
Fiems, L. O., Hoof, J. van, Uytterhaegen, L., Boucqué, C. V. and Demeyer, D. 1995. Comparative quality of meat from double-muscled and normal beef cattle. In Proteolysis and meat quality (ed. Ouali, A., Smulders, F. and Demeyer, D.), pp. 381393. ECCEAMST, Nijmegen,Google Scholar
Folch, J., Lees, M. and Stanley, S. G. H. 1957. A simple method for the isolation and purification of total lipids from animal tissues. Journal of Biological Chemistry 226: 497509.Google Scholar
Gibney, M. J. 1993. Fat in animal products: facts and perceptions. In Safety and quality of food from animals (ed. Wood, J. D. and Lawrence, T. L. J.), British Society of Animal Production occasional publication no. 17, pp. 5161.Google Scholar
Gormley, T. R., Downey, G. and O’Beirne, D. 1987. Food, health and the consumer. Elsevier Applied Science, London.Google Scholar
Griinari, J. M., Corl, B. A., Lacy, S. H., Chouinard, P. Y., Nurmela, K. V. V. and Bauman, D. E. 2000. Conjugated linoleic acid is synthesized endogenously in lactaing dairy cows by D 9-desaturase. Journal of Nutrition 130: 22852291.Google Scholar
Grobet, L., Poncelet, D., Royo, L. J., Brouwers, B., Pirottin, D., Michaux, C., Ménissier, F., Zanotti, M., Dunner, S. and Georges, M. 1998. Molecular definition of an allelic series of mutations disrupting the myostatin function and causing double-muscling in cattle. Mammalian Genome 9: 210213.Google Scholar
Ha, Y. L., Storkson, J. and Pariza, M. W. 1990. Inhibition of benzoapyrene-induced mouse forestomach neoplasia by conjugated dienoic derivatives of linoleic acid. Cancer Research 50: 10791101.Google Scholar
Hanset, R., Michaux, C. and Stasse, A. 1987. Relationships between growth rate, carcass composition, feed intake, feed conversion ratio and income in four biological types of cattle. Génétique Sélection Évolution 19: 225248.Google Scholar
Huerta-Leidenz, N.O, Cross, H. R., Savell, J. W., Lunt, D. K., Baker, J. F., Pelton, L. S. and Smith, S. B. 1993. Comparison of the fatty acid composition of subcutaneous adipose tissue from mature Brahman and Hereford cows. Journal of Animal Science 71: 625630.Google Scholar
Ip, C., Jiang, C., Thompson, H. and Scimca, J. A. 1997. Retention of conjugated linoleic acid in the mammary gland is associated with tumor inhibition during the postinitiation phase of carcinogenesis. Carcinogenesis 18: 755759.Google Scholar
Kepler, C. R., Hirons, K. P., McNeill, J. J. and Tove, S. B. 1966. Intermediates and products of the biohydrogenation of linoleic acid by Butyrivibrio fibrisolvens . Journal of Biological Chemistry 241: 13501354.Google Scholar
Kramer, J. K., Fellner, V., Dugan, M. E. R., Sauer, F. D., Mossoba, M. M. and Yurawecz, M. P. 1997. Evaluating acid and base catalysts in the methylation of milk and rumen fatty acids with special emphasis on conjugated dienes and total trans fatty acids. Lipids 32: 12191228.Google Scholar
Kramer, J. K., Parodi, P. W., Jensen, R. G., Mossoba, M. M., Yurawecz, M. P. and Adlof, R. O. 1998. Rumenic acid: a proposed common name for the major conjugated linoleic acid isomer found in natural products. Lipids 33: 835.Google Scholar
Larick, D. K., Turner, B. E., Koch, R. M. and Crouse, J. D. 1989. Influence of phospholipid content and fatty acid composition of individual phospholipids in muscle from Bison, Hereford and Brahman steers on flavour. Journal of Food Science 54: 521526.Google Scholar
Lawless, F., Stanton, C., L’Escop, P., Devery, R., Dillon, P. and Murphy, J. J. 1999. Influence of breed on bovine milk cis-9, trans-11-conjugated linoleic. Livestock Production Science 62: 4349.Google Scholar
Lee, K. N., Krichevsky, D. D. and Pariza, M. W. 1994. Conjugated linoleic acid and atherosclerosis in rabbits. Atherosclerosis 108: 1925.Google Scholar
Ma, D. W. L., Wierzbicki, A. A., Field, C. J. and Clandinin, M. T. 1999. Conjugated linoleic acid in Canadian dairy and beef products. Journal of Agricultural and Food Chemistry 47: 19561960.CrossRefGoogle ScholarPubMed
Malau-Aduli, A. E. O., Siebert, B. D., Bottema, C. D. K. and Pitchford, W. S. 1998. Breed comparison of the fatty acid composition of muscle phospholipids in Jersey and Limousin cattle. Journal of Animal Science 76: 766773.Google Scholar
Marmer, W. N., Maxwell, R. J. and Williams, J. E. 1984. Effects of dietary regimen and tissue site on bovine fatty acid profiles. Journal of Animal Science 59: 109121.Google Scholar
Ministry of Agriculture, Fisheries and Food. 1993. National food survey. Her Majesty’s Stationery Office, London.Google Scholar
Morgan, C. A., Noble, R. C., Cocchi, M. and McCartney, R. 1992. Manipulation of the fatty acid composition of pig meat lipids by dietary means. Journal of the Science of Food and Agriculture 58: 357368.Google Scholar
Mossoba, M. M., Kramer, J. K. G., Yurawecz, M. P., Sehat, N., Roach, J. A. G., Eulitz, K., Fritsche, J., Dugan, M. E. R. and Ku, Y. 1999. Impact of novel methodologies on the analysis of conjugated linoleic acid CLA. Implications of CLA feeding studies. Fett/Lipid 101: S235S243.Google Scholar
Nationale Raad voor Voeding 1996. Voedingsaanbevelingen voor België. Published by De Backer, G., Zevekotestraat 43, B-9830 Sint-Martens-Latem, Belgium.Google Scholar
Newbold, J. R., Robertshaw, K. L. and Morris, H. W. 1998. Associations between concentrations of fat and intermediates of ruminal biohydrogenation in milk of dairy cows. Proceedings of the British Society of Animal Science, 1998, p. 224.Google Scholar
Nicolosi, R. J., Rogers, E. J., Kritchevsky, D., Scimeca, J. A. and Huth, P. J. 1997. Dietary conjugated linoleic acid reduces plasma lipoproteins and early aortic atherosclerosis in hypercholesterolemic hamsters. Artery 22: 266277.Google Scholar
Park, Y., Stockson, J. M., Albright, K. J., Liu, W. and Pariza, M. W. 1999. Evidence that the trans-10, cis-12 isomer of conjugated linoleic acid induces body composition changes in mice. Lipids 34: 235241.Google Scholar
Parodi, P. W. 1994. Conjugated linoleic acids – an anticarcinogenic fatty acid present in milk fat. Australian Journal of Dairy Technology 49: 9397.Google Scholar
Rosenthal, M. D., Garcia, M. C., Jones, M. R. and Sprecher, H. 1991. Retroconversion and D 4 desaturation of docosatetraenoate 22: 4 n-6 and docosapentaenotate 22: 5 n-3 by human cells in culture. Biochemica et Biophysica Acta 1083: 2936.Google Scholar
Santora, J. E., Palmquist, D. L. and Roehrig, K. L. 2000. Trans-vaccenic acid is desaturated to conjugated linoleic acid in mice. Journal of Nutrition 130: 208215.CrossRefGoogle ScholarPubMed
Shantha, N. C., Crumm, A. D. and Decker, E. A. 1994. Evaluation of conjugated linoleic acid concentration in cooked beef. Journal of Agricultural and Food Chemistry 42: 17571760.Google Scholar
Shantha, N. C., Decker, E. A. and Hennig, B. 1993. Comparison of methylation methods for the quantification of conjugated linoleic acid isomers. Journal of AOAC International 76: 644649.CrossRefGoogle Scholar
Smet, S. de, Webb, E. C., Claeys, E., Uytterhaegen, L. and Demeyer, D. I. 2000. Effect of dietary energy and protein levels on fatty acid composition of intramuscular fat in double-muscled Belgian Blue bulls. Meat Science 56: 7379.Google Scholar
Turkii, P. R. and Campbell, A. M. 1967. Relation of phospholipids to other lipid components in two beef muscles. Journal of Food Science 32: 151154.Google Scholar
Uytterhaegen, L., Claeys, E., Demeyer, D., Lippens, M., Fiems, L., Boucqué, C. V., Voorde, G. van de and Bastiaans, A. 1994. Effect of double-muscling on carcass quality, beef tenderness and myofibrillar protein degradation in Belgian Blue bulls. Meat Science 38: 255267.CrossRefGoogle Scholar
Vernon, R. G. and Flint, D. F. 1988. Lipid metabolism in farm animals. Proceedings of the Nutrition Society 47: 287293.Google Scholar
Webb, E. C., Smet, S. de, Nevel, C. van, Martens, B. and Demeyer, D. I. 1998. Effect of anatomical location on the composition of fatty acids in double-muscled Belgian Blue cows. Meat Science 50: 4553.Google Scholar