Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-28T04:13:07.776Z Has data issue: false hasContentIssue false

The activity of some digestive enzymes in domestic rabbits before and after weaning

Published online by Cambridge University Press:  02 September 2010

N. Dojană
Affiliation:
Department of Biology of Laboratory Animals, Faculty of Veterinary Medicine, University of Agronomic Sciences and Veterinary Medicine, Bucharest, Romania
M. Costache
Affiliation:
Department of Enzymology, Faculty of Biology, University of Bucharest, Romania
A. Dinischiotu
Affiliation:
Department of Enzymology, Faculty of Biology, University of Bucharest, Romania
Get access

Abstract

The activity ofamylase, maitase, lipase, pepsin, trypsin and chymotrypsin in suckling (15 days of age) and in 1-day weaned (43 days of age) domestic rabbits was assayed and compared with older (90 and 180 days) rabbits. It was found that amylase was active in the pancreas at 15 days (11 580 amylase units (AU) per mg protein) and increased during growth, reaching a maximum level (58 960 AU per mg protein) at 90 days of age. Specific activity (SA) of maitase from the small intestine mucosa varied depending on the intestinal segment and the age of the rabbits: activity in the duodenal mucosa decreased, while in the jejunal and Heal mucosa activity increased, during growth. Lipase SA reached a maximum level in suckling rabbits at the age of 15 days (in gastric mucosa 242 and in pancreas 608 mequiv. liberated oleic acid per mg protein per h, 37°C) and decreased sharply at weaning: in gastric mucosa down to 86 and in pancreas down to 89 mequiv. oleic acid per mg protein per h, 37°C. SA of pepsin remained relatively constant for all the studied categories of rabbits: 38 to 39 nmol tyrosine per mg protein per min, 25°C. Trypsin and chymotrypsin SA reached a peak at about weaning: 1·83 nmol benzoyl-arginyl-ethyl-ester per mg protein per min, 25°C and 40·1 nmol benzoyl-phenyl-naphtyl-ester per mg protein per min, 35·5°C respectively.

Type
Research Article
Copyright
Copyright © British Society of Animal Science 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anson, M. L. 1939. The estimation of pepsin, trypsin, papain, and cathepsin with hemoglobin Journal of General Physiology 22: 7989.CrossRefGoogle Scholar
Baintner, K. and Farkas, J. 1989. Development of porcine digestive enzymes with special reference to ribonuclease. Ada Veterinaria Hungarica 37: 281288.Google ScholarPubMed
Baintner, K. and Szabó, J. 1989. Development of ovine digestive enzymes with special reference to ribonuclease. Ada Veterinaria Hungarica 37: 289298.Google ScholarPubMed
Cherry, I. S. and Crandall, L. A. 1932. The specificity of pancreatic lipase: its appearance in the blood after pancreatic injury. American Journal ofPhysiology 100: 266.CrossRefGoogle Scholar
Corring, T., Lebas, F. and Courtot, D. 1972. Controle de revolution de l'equipement enzymatique du pancreas exocrine du lapin de la naissance á 6 semaines Annales de Biologie Animale, Biochimie et Biophysique 12: 221231.CrossRefGoogle Scholar
Costache, M., Dojanä, N., Bodea, C. and Florea, D. 1993. Characterization of glucoamylase — maltase complex in rabbit small intestine before and after weaning. Scientific papers, U.S.A. Bucuresti 36: 1219.Google Scholar
Dahlqvist, A. 1963. Rat intestinal dextranase. Localisation and relation to the other carbohydrases of the digestive tract. Biochemical Journal 86: 7281.CrossRefGoogle Scholar
Dixon, M. and Webb, E. 1976. The enzymes. Longmans, Green and Co. Ltd, London.Google Scholar
Dojanä, N. and Constantin, N. 1994. Research on serum and pancreatic amylase and lipase activity in rabbits fed with starch and vegetable oil enriched food. Scientific papers, U.S.A. Bucuresti 37: 2229.Google Scholar
Dojanä, N., Sälägeanu, Gh. and Chiciudean, E. 1989. Study on some blood digestive enzymes in weaned rabbits. Scientific Annals, I.C.P.C.P.A M. Balotesti 22:1822.Google Scholar
Dojanä, N., Sälägeanu, Gh. and Constantin, N. 1990. Blood biochemical parameters in weaned rabbits. Scientific papers, I.A.N.B. Bucuresti 33:1521.Google Scholar
Elefterescu, H. and Dojanä, N. 1995. Original method for sampling the pancreatic juice in rabbit in the case of acute experiment. Scientific papers, U.S.A.M.V. Bucuresti 39: 4347Google Scholar
Fekete, S. 1989. Recent findings and future perspectives of digestive physiology in rabbits: a review Ada Veterinaria Hungarica 37: 265279.Google ScholarPubMed
Fekete, S., Hullar, I., Febel, H. and Bokori, J. 1990. The effect of animal fat and vegetable oil supplementation of feeds of different energy concentration upon the digestibility of nutrients and some blood parameters in rabbits Acta Veterinaria Hungarica 38:165175.Google ScholarPubMed
Gornall, A.Gv Bardawil, C. J. and David, M. M. 1949. Determination of serum proteins by means of the biuret reaction. Journal of Biological Chemistry 177: 751.CrossRefGoogle ScholarPubMed
Harada, E., Nakagawa, K. and Kato, S. 1982. Characteristic secretory response of the exocrine pancreas in various mammalian and avian species. Compendium of Biochemistry and Physiology 73A: 447453.Google Scholar
Henning, S. J. 1973. Ontogeny of the enzymes in the small intestine American Review ofPhysiology 47: 231245.CrossRefGoogle Scholar
Laplace, J. P. 1978. Le transit digestif chez les monogastriques. III-Comportement (prise de nourriture, caecotrophie), motricité et transit digestifs, et pathogénie des diarrhées chez le lapin. Annales de Zootechnie 27: 225265.CrossRefGoogle Scholar
Lebas, F., Corring, T. and Courtot, D. 1977. Equipement enzymatique du pancréas exocrine chez le lapin, mise en place et évolution de la naissance au sevrage. Relation avec la composition du régime alimentaire. Annales de Biologie Animate, Biochimie et Biophysique 11: 399413.CrossRefGoogle Scholar
Lowry, O. H., Rosebrough, N. J., Farr, A. L. and Randall, R. J. 1951. Protein measurement with the folin phenol reagent Journal of Biological Chemistry 193: 265275.CrossRefGoogle ScholarPubMed
Manta, I., Cucuianu, M., Benga, G. and Hodarnau, A. 1976. Methods in biochemistry. Dacia, Bucuresti, România.Google Scholar
Marounek, M., Vovk, S. J. and Skrivanova, V. 1995. Distribution of activity of hydrolytic enzymes in the digestive tract of rabbits British Journal of Nutrition 73: 463469.CrossRefGoogle ScholarPubMed
Merçier, P. 1989. Rôle d‘aliment dans la pathologie digestive du lapin La Revue Avicole 8:115122.Google Scholar
Natalis, J.-Y. 1972. Les particularités de la digestion chez le lapin. Thêse, nr. 59, I'Université Claude Bernard, Lion.Google Scholar
Sabatier, H. 1971. Le lapin et son élevage professionnel. Gounod, Paris.Google Scholar
Schwert, G. W. and Takenaka, Y. 1955. A spectrophotometric determination of trypsin and chymotrypsin Biochimica et Biophysica Acta 16: 570575.CrossRefGoogle ScholarPubMed
Serban, M., Câmpeanu, G. and Ionescu, E. 1993. Methods in animal biochemistry. Didacticä si Pedagogicä, Bucuresti.Google Scholar
Smith, B. W. and Roe, J. H. 1949. Photometric method for the determination of α-amylase in blood and urine, with the use of the starch-iodine color. Journal of Biological Chemistry 179: 5359.CrossRefGoogle ScholarPubMed
Tacu, A. 1968. t-Test. In Statistic methods in zootechny and veterinary medicine, pp. 2153. Agrosilvicä Cluj-Napoca, Romania.Google Scholar