Hostname: page-component-5f745c7db-6bmsf Total loading time: 0 Render date: 2025-01-06T15:09:12.591Z Has data issue: true hasContentIssue false

The biology of dendritic cells and their potential use in veterinary medicine

Published online by Cambridge University Press:  28 February 2007

Y. Vanloubbeeck
Affiliation:
Department of Veterinary Pathology, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA
J. Hostetter
Affiliation:
Department of Veterinary Pathology, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA
D. E. Jones*
Affiliation:
Department of Veterinary Pathology, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA
*
*E-mail: [email protected] Fax: (515)-294–5423

Abstract

Dendritic cells have been shown to be the main antigen-presenting cells in vitro and in vivo, playing a pivotal role in the induction of both tolerance and immunity. Dendritic cells from humans and mice have been extensively studied and dendritic cell-based vaccines have been shown to be effective in the prevention and treatment of infectious, allergic and neoplastic diseases. Studies of dendritic cells of domestic animal origin are becoming available and confirm a role for these cells in the pathogenesis of a variety of animal diseases, suggesting that dendritic cells could be used as adjuvants for prophylactic and therapeutic strategies in veterinary medicine.

Type
Review Article
Copyright
Copyright © CAB International 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ahmad-Nejad, P, Hacker, H, Rutz, M, Bauer, S, Vabulas, RM and Wagner, H (2002). Bacterial CpG-DNA and lipopolysaccharides activate Toll-like receptors at distinct cellular compartments. European Journal of Immunology 32: 19581968.3.0.CO;2-U>CrossRefGoogle ScholarPubMed
Ahuja, SS, Mummidi, S, Malech, HL and Ahuja, SK (1998). Human dendritic cell (DC)-based anti-infective therapy: engineering DCs to secrete functional IFN-gamma and IL-12. Journal of Immunology 161: 868876.CrossRefGoogle ScholarPubMed
Ahuja, SS, Reddick, RL, Sato, N, Montalbo, E, Kostecki, V, Zhao, W, Dolan, MJ, Melby, PC and Ahuja, SK (1999). Dendritic cell (DC)-based anti-infective strategies: DCs engineered to secrete IL-12 are a potent vaccine in a murine model of an intracellular infection. Journal of Immunology 163: 38903897.CrossRefGoogle Scholar
Akbari, O, DeKruyff, RH and Umetsu, DT (2001). Pulmonary dendritic cells producing IL-10 mediate tolerance induced by respiratory exposure to antigen. Nature Immunology 2: 725731.CrossRefGoogle ScholarPubMed
Alvarez, CP, Lasala, F, Carrillo, J, Muniz, O, Corbi, AL and Delgado, R (2002). C-type lectins DC-SIGN and L-SIGN mediate cellular entry by Ebola virus in cis and in trans. Journal of Virology 76: 68416844.CrossRefGoogle ScholarPubMed
Andrews, DM, Andoniou, CE, Granucci, F, Ricciardi-Castagnoli, P and Degli-Esposti, MA (2001). Infection of dendritic cells by murine cytomegalovirus induces functional paralysis. Nature Immunology 2: 10771084.CrossRefGoogle ScholarPubMed
Ardavin, C (1997). Thymic dendritic cells. Immunology Today 18: 350361.CrossRefGoogle ScholarPubMed
Ato, M, Stager, S, Engwerda, CR and Kaye, PM (2002). Defective CCR7 expression on dendritic cells contributes to the development of visceral leishmaniasis. Nature Immunology 3: 11851191.CrossRefGoogle Scholar
Aucouturier, P, Geissmann, F, Damotte, D, Saborio, GP, Meeker, HC, Kascsak, R, Carp, RI and Wisniewski, T (2001). Infected splenic dendritic cells are sufficient for prion transmission to the CNS in mouse scrapie. Journal of Clinical Investigation 108: 703708.CrossRefGoogle Scholar
Ballas, ZK, Krieg, AM, Warren, T, Rasmussen, W, Davis, HL, Waldschmidt, M and Weiner, GJ (2001). Divergent therapeutic and immunologic effects of oligodeoxynucleotides with distinct CpG motifs. Journal of Immunology 167: 48784886.CrossRefGoogle ScholarPubMed
Banchereau, J and Steinman, RM (1998). Dendritic cells and the control of immunity. Nature 392: 245252.CrossRefGoogle ScholarPubMed
Banchereau, J, Briere, F, Caux, C, Davoust, J, Lebecque, S, Liu, YJ, Pulendran, B and Palucka, K (2000). Immunobiology of dendritic cells. Annual Review of Immunology 18: 767811.CrossRefGoogle ScholarPubMed
Banchereau, J, Palucka, AK, Dhodapkar, M, Burkeholder, S, Taquet, N, Rolland, A, Taquet, S, Coquery, S, Wittkowski, KM, Bhardwaj, N, Pineiro, L, Steinman, R and Fay, J (2001). Immune and clinical responses in patients with metastatic melanoma to CD34(+) progenitor-derived dendritic cell vaccine. Cancer Research 61: 64516458.Google ScholarPubMed
Barratt-Boyes, SM, Henderson, RA and Finn, OJ (1996). Chimpanzee dendritic cells with potent immunostimulatory function can be propagated from peripheral blood. Immunology 87: 528534.CrossRefGoogle ScholarPubMed
Bennett, CL, Misslitz, A, Colledge, L, Aebischer, T and Blackburn, CC (2001). Silent infection of bone marrow-derived dendritic cells by Leishmania mexicana amastigotes. European Journal of Immunology 31: 876883.3.0.CO;2-I>CrossRefGoogle ScholarPubMed
Blank, C, Fuchs, H, Rappersberger, K, Rollinghoff, M and Moll, H (1993). Parasitism of epidermal Langerhans cells in experimental cutaneous leishmaniasis with Leishmania major. Journal of Infectious Diseases 167: 418425.CrossRefGoogle ScholarPubMed
Blauvelt, A, Clerici, M, Lucey, DR, Steinberg, SM, Yarchoan, R, Walker, R, Shearer, GM and Katz, SI (1995). Functional studies of epidermal Langerhans cells and blood monocytes in HIV-infected persons. Journal of Immunology 154: 35063515.CrossRefGoogle ScholarPubMed
Bodnar, KA, Serbina, NV and Flynn, JL (2001). Fate of Mycobacterium tuberculosis within murine dendritic cells. Infection and Immunity 69: 800809.CrossRefGoogle ScholarPubMed
Borrow, P, Evans, CF and Oldstone, MB (1995). Virus-induced immunosuppression: immune system-mediated destruction of virus-infected dendritic cells results in generalized immune suppression. Journal of Virology 69: 10591070.CrossRefGoogle ScholarPubMed
Bourguin, I, Moser, M, Buzoni-Gatel, D, Tielemans, F, Bout, D, Urbain, J and Leo, O (1998). Murine dendritic cells pulsed in vitro with Toxoplasma gondii antigens induce protective immunity in vivo. Infection and Immunity 66: 48674874.CrossRefGoogle ScholarPubMed
Brown, KL, Stewart, K, Ritchie, DL, Mabbott, NA, Williams, A, Fraser, H, Morrison, WI and Bruce, ME (1999). Scrapie replication in lymphoid tissues depends on prion protein-expressing follicular dendritic cells. Nature Medicine 5: 13081312.CrossRefGoogle ScholarPubMed
Brown, RD, Pope, B, Murray, A, Esdale, W, Sze, DM, Gibson, J, Ho, PJ, Hart, D and Joshua, D (2001). Dendritic cells from patients with myeloma are numerically normal but functionally defective as they fail to up-regulate CD80 (B7–1) expression after huCD40LT stimulation because of inhibition by transforming growth factor-beta1 and interleukin-10. Blood 98: 29922998.CrossRefGoogle ScholarPubMed
Bruce, ME, Brown, KL, Mabbott, NA, Farquhar, CF and Jeffrey, M (2000). Follicular dendritic cells in TSE pathogenesis. Immunology Today 21: 442446.CrossRefGoogle ScholarPubMed
Campos, MA, Almeida, IC, Takeuchi, O, Akira, S, Valente, EP, Procopio, DO, Travassos, LR, Smith, JA, Golenbock, DT and Gazzinelli, RT (2001). Activation of Toll-like receptor-2 by glycosylphosphatidylinositol anchors from a protozoan parasite. Journal of Immunology 167: 416423.CrossRefGoogle ScholarPubMed
Carpentier, AF, Chen, L, Maltonti, F and Delattre, JY (1999). Oligodeoxynucleotides containing CpG motifs can induce rejection of a neuroblastoma in mice. Cancer Research 59: 54295432.Google ScholarPubMed
Carrasco, CP, Rigden, RC, Schaffner, R, Gerber, H, Neuhaus, V, Inumaru, S, Takamatsu, H, Bertoni, G, McCullough, KC and Summerfield, A (2001). Porcine dendritic cells generated in vitro: morphological, phenotypic and functional properties. Immunology 104: 175184.CrossRefGoogle ScholarPubMed
Catchpole, B, Stell, AJ and Dobson, JM (2002). Generation of blood-derived dendritic cells in dogs with oral malignant melanoma. Journal of Comparative Pathology 126: 238241.CrossRefGoogle ScholarPubMed
Chan, SS, McConnell, I and Blacklaws, BA (2002). Generation and characterization of ovine dendritic cells derived from peripheral blood monocytes. Immunology 107: 366372.CrossRefGoogle ScholarPubMed
Chaussabel, D, Tolouei Semnani, R, McDowell, MA, Sacks, D, Sher, A and Nutman, TB (2003). Unique gene expression profiles of human macrophages and dendritic cells to phylogenetically distinct parasites. Blood 102: 672681.CrossRefGoogle ScholarPubMed
Colmenares, M, Puig-Kroger, A, Pello, OM, Corbi, AL and Rivas, L (2002). Dendritic cell (DC)-specific intercellular adhesion molecule 3 (ICAM-3)-grabbing nonintegrin (DC-SIGN, CD209), a C-type surface lectin in human DCs, is a receptor for Leishmania amastigotes. Journal of Biological Chemistry 277: 3676636769.CrossRefGoogle ScholarPubMed
Constant, SL and Bottomly, K (1997). Induction of Th1 and Th2 CD4+ T cell responses: the alternative approaches. Annual Review of Immunology 15: 297322.CrossRefGoogle ScholarPubMed
Darji, A, Stockinger, B, Wehland, J, Chakraborty, T and Weiss, S (1997). T-cell anergy induced by antigen presenting cells treated with the hemolysin of Listeria monocytogenes. Immunology Letters 57: 3337.CrossRefGoogle ScholarPubMed
Daro, E, Pulendran, B, Brasel, K, Teepe, M, Pettit, D, Lynch, DH, Vremec, D, Robb, L, Shortman, K, McKenna, HJ, Maliszewski, CR and Maraskovsky, E (2000). Polyethylene glycol-modified GM-CSF expands CD11b(high)CD11c(high) but notCD11b(low)CD11c(high) murine dendritic cells in vivo: a comparative analysis with Flt3 ligand. Journal of Immunology 165: 4958.CrossRefGoogle ScholarPubMed
de Jong, EC, Vieira, PL, Kalinski, P, Schuitemaker, JH, Tanaka, Y, Wierenga, EA, Yazdanbakhsh, M and Kapsenberg, ML (2002). Microbial compounds selectively induce Th1 cell-promoting or Th2 cell-promoting dendritic cells in vitro with diverse th cell-polarizing signals. Journal of Immunology 168: 17041709.CrossRefGoogle ScholarPubMed
Demangel, C, Bean, AG, Martin, E, Feng, CG, Kamath, AT and Britton, WJ (1999). Protection against aerosol Mycobacterium tuberculosis infection using Mycobacterium bovis Bacillus Calmette Guerin-infected dendritic cells. European Journal of Immunology 29: 19721979.3.0.CO;2-1>CrossRefGoogle ScholarPubMed
Dhodapkar, MV, Steinman, RM, Krasovsky, J, Munz, C and Bhardwaj, N (2001). Antigen-specific inhibition of effector T cell function in humans after injection of immature dendritic cells. Journal of Experimental Medicine 193: 233238.CrossRefGoogle ScholarPubMed
Dhodapkar, MV, Krasovsky, J and Olson, K (2002). T cells from the tumor microenvironment of patients with progressive myeloma can generate strong, tumor-specific cytolytic responses to autologous, tumor-loaded dendritic cells. Proceedings of the National Academy of Sciences of the United States of America 99: 1300913013.CrossRefGoogle ScholarPubMed
Elkins, KL, Rhinehart-Jones, TR, Stibitz, S, Conover, JS and Klinman, DM (1999). Bacterial DNA containing CpG motifs stimulates lymphocyte-dependent protection of mice against lethal infection with intracellular bacteria. Journal of Immunology 162: 22912298.CrossRefGoogle ScholarPubMed
Esche, C, Subbotin, VM, Maliszewski, C, Lotze, MT and Shurin, MR (1998). FLT3 ligand administration inhibits tumor growth in murine melanoma and lymphoma. Cancer Research 58: 380383.Google ScholarPubMed
Esche, C, Cai, Q, Peron, JM, Hunter, O, Subbotin, VM, Lotze, MT and Shurin, MR (2000). Interleukin-12 and Flt3 ligand differentially promote dendropoiesis in vivo. European Journal of Immunology 30: 25652575.3.0.CO;2-V>CrossRefGoogle ScholarPubMed
Figdor, CG, van Kooyk, Y and Adema, GJ (2002). C-type lectin receptors on dendritic cells and Langerhans cells. Nature Reviews. Immunology 2: 7784.CrossRefGoogle ScholarPubMed
Filgueira, L, Nestle, FO, Rittig, M, Joller, HI and Groscurth, P (1996). Human dendritic cells phagocytose and process Borrelia burgdorferi. Journal of Immunology 157: 29983005.CrossRefGoogle ScholarPubMed
Flohe, SB, Bauer, C, Flohe, S and Moll, H (1998). Antigen-pulsed epidermal Langerhans cells protect susceptible mice from infection with the intracellular parasite Leishmania major. European Journal of Immunology 28: 38003811.3.0.CO;2-0>CrossRefGoogle ScholarPubMed
Fong, L and Engleman, EG (2000). Dendritic cells in cancer immunotherapy. Annual Review of Immunology 18: 245273.CrossRefGoogle ScholarPubMed
Fonteneau, JF, Larsson, M and Bhardwaj, N (2002). Interactions between dead cells and dendritic cells in the induction of antiviral CTL responses. Current Opinion in Immunology 14: 471477.CrossRefGoogle ScholarPubMed
Fugier-Vivier, I, Servet-Delprat, C, Rivailler, P, Rissoan, MC, Liu, YJ, Rabourdin-Combe, C (1997). Measles virus suppresses cell-mediated immunity by interfering with the survival and functions of dendritic and T cells. Journal of Experimental Medicine 186: 813823.CrossRefGoogle ScholarPubMed
Furumoto, K, Arii, S, Yamasaki, S, Mizumoto, M, Mori, A, Inoue, N, Isobe, N and Imamura, M (2000). Spleen-derived dendritic cells engineered to enhance interleukin-12 production elicit therapeutic antitumor immune responses. International Journal of Cancer 87: 665672.3.0.CO;2-F>CrossRefGoogle ScholarPubMed
Geijtenbeek, TB, Kwon, DS, Torensma, R, van Vliet, SJ, van Duijnhoven, GC, Middel, J, Cornelissen, IL, Nottet, HS, KewalRamani, VN, Littman, DR, Figdor, CG and van Kooyk, Y (2000a) DC-SIGN, a dendritic cell-specific HIV-1-binding protein that enhances trans-infection of T cells. Cell 100: 587597.CrossRefGoogle ScholarPubMed
Geijtenbeek, TB, Torensma, R, van Vliet, SJ, van Duijnhoven, GC, Adema, GJ, van Kooyk, Y and Figdor, CG (2000b) Identification of DC-SIGN, a novel dendritic cell-specific ICAM-3 receptor that supports primary immune responses. Cell 100: 575585.CrossRefGoogle ScholarPubMed
Geijtenbeek, TB, Van Vliet, SJ, Koppel, EA, Sanchez-Hernandez, M, Vandenbroucke-Grauls, CM, Appelmelk, B and Van Kooyk, Y (2003). Mycobacteria target DC-SIGN to suppress dendritic cell function. Journal of Experimental Medicine 197: 717.CrossRefGoogle ScholarPubMed
Gomis, S, Babiuk, L, Godson, DL, Allan, B, Thrush, T, Townsend, H, Willson, P, Waters, E, Hecker, R and Potter, A (2003). Protection of chickens against Escherichia coli infections by DNA containing CpG motifs. Infection and Immunity 71: 857863.CrossRefGoogle ScholarPubMed
Gonzalez-Juarrero, M and Orme, IM (2001). Characterization of murine lung dendritic cells infected with Mycobacterium tuberculosis. Infection and Immunity 69: 11271133.CrossRefGoogle ScholarPubMed
Guermonprez, P, Valladeau, J, Zitvogel, L, Thery, C and Amigorena, S (2002). Antigen presentation and T cell stimulation by dendritic cells. Annual Review of Immunology 20: 621667.CrossRefGoogle Scholar
Guzman, CA, Domann, E, Rohde, M, Bruder, D, Darji, A, Weiss, S, Wehland, J, Chakraborty, T and Timmis, KN (1996). Apoptosis of mouse dendritic cells is triggered by listeriolysin, the major virulence determinant of Listeria monocytogenes. Molecular Microbiology 20: 119126.CrossRefGoogle ScholarPubMed
Hagglund, HG, McSweeney, PA, Mathioudakis, G, Bruno, B, Georges, GE, Gass, MJ, Moore, P, Sale, GE, Storb, R and Nash, RA (2000). Ex vivo expansion of canine dendritic cells from CD34+ bone marrow progenitor cells. Transplantation 70: 14371442.CrossRefGoogle ScholarPubMed
Halary, F, Amara, A, Lortat-Jacob, H, Messerle, M, Delaunay, T, Houles, C, Fieschi, F, Arenzana-Seisdedos, F, Moreau, JF, Dechanet-Merville, J (2002). Human cytomegalovirus binding to DC-SIGN is required for dendritic cell infection and target cell trans-infection. Immunity 17: 653664.CrossRefGoogle ScholarPubMed
Hammond, SA, Horohov, D and Montelaro, RC (1999). Functional characterization of equine dendritic cells propagated ex vivo using recombinant human GM-CSF and recombinant equine IL-4. Veterinary Immunology and Immunopathology 71: 197214.CrossRefGoogle ScholarPubMed
Hawiger, D, Inaba, K, Dorsett, Y, Guo, M, Mahnke, K, Rivera, M, Ravetch, JV, Steinman, RM and Nussenzweig, MC (2001). Dendritic cells induce peripheral T cell unresponsiveness under steady state conditions in vivo. Journal of Experimental Medicine 194: 769779.CrossRefGoogle ScholarPubMed
Hayashi, F, Smith, KD, Ozinsky, A, Hawn, TR, Yi, EC, Goodlett, DR, Eng, JK, Akira, S, Underhill, DM and Aderem, A (2001). The innate immune response to bacterial flagellin is mediated by Toll-like receptor 5. Nature 410: 10991103.CrossRefGoogle ScholarPubMed
Heggebo, R, Press, CM, Gunnes, G, Gonzalez, L and Jeffrey, M (2002). Distribution and accumulation of PrP in gut-associated and peripheral lymphoid tissue of scrapie-affected Suffolk sheep. Journal of General Virology 83: 479489.CrossRefGoogle ScholarPubMed
Hemmi, H, Takeuchi, O, Kawai, T, Kaisho, T, Sato, S, Sanjo, H, Matsumoto, M, Hoshino, K, Wagner, H, Takeda, K and Akira, S (2000). A Toll-like receptor recognizes bacterial DNA. Nature 408: 740745.CrossRefGoogle ScholarPubMed
Hope, JC, Kwong, LS, Sopp, P, Collins, RA and Howard, CJ (2000). Dendritic cells induce CD4+ and CD8+ T-cell responses to Mycobacterium bovis and M. avium antigens in Bacille Calmette Guerin vaccinated and nonvaccinated cattle. Scandinavian Journal of Immunology 52: 285291.CrossRefGoogle Scholar
Hoshino, K, Takeuchi, O, Kawai, T, Sanjo, H, Ogawa, T, Takeda, Y, Takeda, K and Akira, S (1999). Cutting edge: Toll-like receptor 4 (TLR4)-deficient mice are hyporesponsive to lipopolysaccharide: evidence for TLR4 as the Lps gene product. Journal of Immunology 162: 37493752.CrossRefGoogle ScholarPubMed
Howard, CJ, Brooke, GP, Werling, D, Sopp, P, Hope, JC, Parsons, KR and Collins, RA (1999). Dendritic cells in cattle: phenotype and function. Veterinary Immunology and Immunopathology 72: 119124.CrossRefGoogle ScholarPubMed
Hsu, FJ, Benike, C, Fagnoni, F, Liles, TM, Czerwinski, D, Taidi, B, Engleman, EG and Levy, R (1996). Vaccination of patients with B-cell lymphoma using autologous antigen-pulsed dendritic cells. Nature Medicine 2: 5258.CrossRefGoogle ScholarPubMed
Hu, J, Pope, M, Brown, C, O'Doherty, U and Miller, CJ (1998). Immunophenotypic characterization of simian immunodeficiency virus-infected dendritic cells in cervix, vagina, and draining lymph nodes of rhesus monkeys. Laboratory Investigation 78: 435451.Google ScholarPubMed
Hu, J, Gardner, MB and Miller, CJ (2000). Simian immunodeficiency virus rapidly penetrates the cervicovaginal mucosa after intravaginal inoculation and infects intraepithelial dendritic cells. Journal of Virology 74: 60876095.CrossRefGoogle ScholarPubMed
Huang, FP, Platt, N, Wykes, M, Major, JR, Powell, TJ, Jenkins, CD and MacPherson, GG (2000). A discrete subpopulation of dendritic cells transports apoptotic intestinal epithelial cells to T cell areas of mesenteric lymph nodes. Journal of Experimental Medicine 191: 435444.CrossRefGoogle Scholar
Huang, FP, Farquhar, CF, Mabbott, NA, Bruce, ME and MacPherson, GG (2002). Migrating intestinal dendritic cells transport PrP(Sc) from the gut. Journal of General Virology 83: 267271.CrossRefGoogle ScholarPubMed
Huang, Q, Liu, D, Majewski, P, Schulte, LC, Korn, JM, Young, RA, Lander, ES and Hacohen, N (2001). The plasticity of dendritic cell responses to pathogens and their components. Science 294: 870875.CrossRefGoogle ScholarPubMed
Inaba, K, Metlay, JP, Crowley, MT and Steinman, RM (1990). Dendritic cells pulsed with protein antigens in vitro can prime antigen-specific, MHC-restricted T cells in situ. Journal of Experimental Medicine 172: 631640.CrossRefGoogle ScholarPubMed
Jager, E, Jager, D, Karbach, J, Chen, YT, Ritter, G, Nagata, Y, Gnjatic, S, Stockert, E, Arand, M, Old, LJ and Knuth, A (2000). Identification of NY-ESO-1 epitopes presented by human histocompatibility antigen (HLA)-DRB4*0101–0103 and recognized by CD4(+) T lymphocytes of patients with NY-ESO-1-expressing melanoma. Journal of Experimental Medicine 191: 625630.CrossRefGoogle ScholarPubMed
Janeway, CA Jr and Medzhitov, R (2002). Innate immune recognition. Annual Review of Immunology 20: 197216.CrossRefGoogle ScholarPubMed
Jebbari, H, Stagg, AJ, Davidson, RN and Knight, SC (2002). Leishmania major promastigotes inhibit dendritic cell motility in vitro. Infection and Immunity 70: 10231026.CrossRefGoogle ScholarPubMed
Jiao, X, Lo-Man, R, Guermonprez, P, Fiette, L, Deriaud, E, Burgaud, S, Gicquel, B, Winter, N and Leclerc, C (2002). Dendritic cells are host cells for mycobacteria in vivo that trigger innate and acquired immunity. Journal of Immunology 168: 12941301.CrossRefGoogle ScholarPubMed
Jonuleit, H, Schmitt, E, Schuler, G, Knop, J and Enk, AH (2000). Induction of interleukin 10-producing, nonproliferating CD4(+) T cells with regulatory properties by repetitive stimulation with allogeneic immature human dendritic cells. Journal of Experimental Medicine 192: 12131222.CrossRefGoogle ScholarPubMed
Kline, JN, Waldschmidt, TJ, Businga, TR, Lemish, JE, Weinstock, JV, Thorne, PS and Krieg, AM (1998). Modulation of airway inflammation by CpG oligodeoxynucleotides in a murine model of asthma. Journal of Immunology 160: 25552559.CrossRefGoogle Scholar
Knight, SC and Patterson, S (1997). Bone marrow-derived dendritic cells, infection with human immunodeficiency virus, and immunopathology. Annual Review of Immunology 15: 593615.CrossRefGoogle ScholarPubMed
Kremer, IB, Gould, MP, Cooper, KD and Heinzel, FP (2001). Pretreatment with recombinant Flt3 ligand partially protects against progressive cutaneous leishmaniasis in susceptible BALB/c mice. Infection and Immunity 69: 673680.CrossRefGoogle ScholarPubMed
Krieg, AM (2002). CpG motifs in bacterial DNA and their immune effects. Annual Review of Immunology 20: 709760.CrossRefGoogle ScholarPubMed
Krieg, AM, Love-Homan, L, Yi, AK and Harty, JT (1998). CpG DNA induces sustained IL-12 expression in vivo and resistance to Listeria monocytogenes challenge. Journal of Immunology 161: 24282434.CrossRefGoogle ScholarPubMed
Kurt-Jones, EA, Popova, L, Kwinn, L, Haynes, LM, Jones, LP, Tripp, RA, Walsh, EE, Freeman, MW, Golenbock, DT, Anderson, LJ and Finberg, RW (2000). Pattern recognition receptors TLR4 and CD14 mediate response to respiratory syncytial virus. Nature Immunology 1: 398401.CrossRefGoogle ScholarPubMed
Lambolez, F, Jooss, K, Vasseur, F and Sarukhan, A (2002). Tolerance induction to self antigens by peripheral dendritic cells. European Journal of Immunology 32: 25882597.3.0.CO;2-1>CrossRefGoogle ScholarPubMed
Lien, E, Sellati, TJ, Yoshimura, A, Flo, TH, Rawadi, G, Finberg, RW, Carroll, JD, Espevik, T, Ingalls, RR, Radolf, JD and Golenbock, DT (1999). Toll-like receptor 2 functions as a pattern recognition receptor for diverse bacterial products. Journal of Biological Chemistry 274: 3341933425.CrossRefGoogle ScholarPubMed
Liu, Y, Zhang, X, Zhang, W, Chen, Z, Chan, T, Ali, K, Jia, Z and Xiang, J (2002). Adenovirus-mediated CD40 ligand gene-engineered dendritic cells elicit enhanced CD8(+) cytotoxic T-cell activation and antitumor immunity. Cancer Gene Therapy 9: 202208.CrossRefGoogle ScholarPubMed
Lu, H and Zhong, G (1999). Interleukin-12 production is required for chlamydial antigen-pulsed dendritic cells to induce protection against live Chlamydia trachomatis infection. Infection and Immunity 67: 17631769.CrossRefGoogle ScholarPubMed
Ludewig, B, Ehl, S, Karrer, U, Odermatt, B, Hengartner, H and Zinkernagel, RM (1998). Dendritic cells efficiently induce protective antiviral immunity. Journal of Virology 72: 38123818.CrossRefGoogle ScholarPubMed
Mabbott, NA, Mackay, F, Minns, F and Bruce, ME (2000). Temporary inactivation of follicular dendritic cells delays neuroinvasion of scrapie. Nature Medicine 6: 719720.CrossRefGoogle ScholarPubMed
Mabbott, NA, McGovern, G, Jeffrey, M and Bruce, ME (2002). Temporary blockade of the tumor necrosis factor receptor signaling pathway impedes the spread of scrapie to the brain. Journal of Virology 76: 51315139.CrossRefGoogle ScholarPubMed
Macatonia, SE, Patterson, S and Knight, SC (1989). Suppression of immune responses by dendritic cells infected with HIV. Immunology 67: 285289.Google ScholarPubMed
Macatonia, SE, Lau, R, Patterson, S, Pinching, AJ and Knight, SC (1990). Dendritic cell infection, depletion and dysfunction in HIV-infected individuals. Immunology 71: 3845.Google ScholarPubMed
Maeda, N, Nigou, J, Herrmann, JL, Jackson, M, Amara, A, Lagrange, PH, Puzo, G, Gicquel, B and Neyrolles, O (2002). The cell surface receptor DC-SIGN discriminates between Mycobacterium species through selective recognition of the mannose caps on lipoarabinomannan. Journal of Biological Chemistry 278: 55135516.CrossRefGoogle ScholarPubMed
Maldonado-Lopez, R, De Smedt, T, Michel, P, Godfroid, J, Pajak, B, Heirman, C, Thielemans, K, Leo, O, Urbain, J and Moser, M (1999). CD8alpha+ and CD8alpha– subclasses of dendritic cells direct the development of distinct T helper cells in vivo. Journal of Experimental Medicine 189: 587592.CrossRefGoogle ScholarPubMed
Manickasingham, SP, Edwards, AD, Schulz, O and Reis e Sousa, C (2003). The ability of murine dendritic cell subsets to direct T helper cell differentiation is dependent on microbial signals. European Journal of Immunology 33: 101107.CrossRefGoogle ScholarPubMed
Maraskovsky, E, Brasel, K, Teepe, M, Roux, ER, Lyman, SD, Shortman, K and McKenna, HJ (1996). Dramatic increase in the numbers of functionally mature dendritic cells in Flt3 ligand-treated mice: multiple dendritic cell subpopulations identified. Journal of Experimental Medicine 184: 19531962.CrossRefGoogle ScholarPubMed
Marriott, I, Hammond, TG, Thomas, EK and Bost, KL (1999). Salmonella efficiently enter and survive within cultured CD11c+ dendritic cells initiating cytokine expression. European Journal of Immunology 29: 11071115.3.0.CO;2-0>CrossRefGoogle ScholarPubMed
Matyszak, MK, Young, JL and Gaston, JS (2002). Uptake and processing of Chlamydia trachomatis by human dendritic cells. European Journal of Immunology 32: 742751.3.0.CO;2-9>CrossRefGoogle ScholarPubMed
Mayordomo, JI, Zorina, T, Storkus, WJ, Zitvogel, L, Garcia-Prats, MD, DeLeo, AB and Lotze, MT (1997). Bone marrow-derived dendritic cells serve as potent adjuvants for peptide-based antitumor vaccines. Stem Cells 15: 94103.CrossRefGoogle ScholarPubMed
Mbow, ML, Zeidner, N, Panella, N, Titus, RG and Piesman, J (1997). Borrelia burgdorferi-pulsed dendritic cells induce a protective immune response against tick-transmitted spirochetes. Infection and Immunity 65: 33863390.CrossRefGoogle ScholarPubMed
McDowell, MA, Marovich, M, Lira, R, Braun, M and Sacks, D (2002). Leishmania priming of human dendritic cells for CD40 ligand-induced interleukin-12p70 secretion is strain and species dependent. Infection and Immunity 70: 39944001.CrossRefGoogle ScholarPubMed
Means, TK, Wang, S, Lien, E, Yoshimura, A, Golenbock, DT and Fenton, MJ (1999). Human toll-like receptors mediate cellular activation by Mycobacterium tuberculosis. Journal of Immunology 163: 39203927.CrossRefGoogle ScholarPubMed
Medzhitov, R (2001). Toll-like receptors and innate immunity. Nature Reviews. Immunology 1: 135145.CrossRefGoogle ScholarPubMed
Mohagheghpour, N, van Vollenhoven, A, Goodman, J and Bermudez, LE (2000). Interaction of Mycobacterium avium with human monocyte-derived dendritic cells. Infection and Immunity 68: 58245829.CrossRefGoogle ScholarPubMed
Moll, H, Fuchs, H, Blank, C and Rollinghoff, M (1993). Langerhans cells transport Leishmania major from the infected skin to the draining lymph node for presentation to antigen-specific T cells. European Journal of Immunology 23: 15951601.CrossRefGoogle Scholar
Moll, H, Flohe, S and Rollinghoff, M (1995). Dendritic cells in Leishmania major-immune mice harbor persistent parasites and mediate an antigen-specific T cell immune response. European Journal of Immunology 25: 693699.CrossRefGoogle ScholarPubMed
Montrasio, F, Frigg, R, Glatzel, M, Klein, MA, Mackay, F, Aguzzi, A and Weissmann, C (2000). Impaired prion replication in spleens of mice lacking functional follicular dendritic cells. Science 288: 12571259.CrossRefGoogle ScholarPubMed
Moser, M and Murphy, KM (2000). Dendritic cell regulation of TH1-TH2 development. Nature Immunology 1: 199205.CrossRefGoogle ScholarPubMed
Murphy, GP, Tjoa, BA, Simmons, SJ, Ragde, H, Rogers, M, Elgamal, A, Kenny, GM, Troychak, MJ, Salgaller, ML and Boynton, AL (1999). Phase II prostate cancer vaccine trial: report of a study involving 37 patients with disease recurrence following primary treatment. Prostate 39: 5459.3.0.CO;2-U>CrossRefGoogle ScholarPubMed
Mutwiri, G, Pontarollo, R, Babiuk, S, Griebel, P, van Drunen Littel-van den Hurk, S, Mena, A, Tsang, C, Alcon, V, Nichani, A, Ioannou, X, Gomis, S, Townsend, H, Hecker, R, Potter, A and Babiuk, LA (2003). Biological activity of immunostimulatory CpG DNA motifs in domestic animals. Veterinary Immunology and Immunopathology 91: 89103.CrossRefGoogle ScholarPubMed
Nargis, M, Chisty, MM, Ihama, Y, Sato, H, Inaba, T and Kamiya, H (2001). Kinetics of Trypanosoma cruzi infection in guinea-pigs, with special reference to the involvement of epidermal Langerhans' cells in the induction of immunity. Parasitology 123: 373380.CrossRefGoogle Scholar
Nestle, FO, Alijagic, S, Gilliet, M, Sun, Y, Grabbe, S, Dummer, R, Burg, G and Schadendorf, D (1998). Vaccination of melanoma patients with peptide- or tumor lysate-pulsed dendritic cells. Nature Medicine 4: 328332.CrossRefGoogle ScholarPubMed
Obert, LA and Hoover, EA (2002). Early pathogenesis of transmucosal feline immunodeficiency virus infection. Journal of Virology 76: 63116322.CrossRefGoogle ScholarPubMed
Ocana-Morgner, C, Mota, MM and Rodriguez, A (2003). Malaria blood stage suppression of liver stage immunity by dendritic cells. Journal of Experimental Medicine 197: 143151.CrossRefGoogle ScholarPubMed
O'Doherty, U, Ignatius, R, Bhardwaj, N and Pope, M (1997). Generation of monocyte-derived dendritic cells from precursors in rhesus macaque blood. Journal of Immunological Methods 207: 185194.CrossRefGoogle ScholarPubMed
Ojcius, DM, Bravo de Alba, Y, Kanellopoulos, JM, Hawkins, RA, Kelly, KA, Rank, RG and Dautry-Varsat, A (1998). Internalization of Chlamydia by dendritic cells and stimulation of Chlamydia-specific T cells. Journal of Immunology 160: 12971303.CrossRefGoogle ScholarPubMed
O'Keeffe, M, Hochrein, H, Vremec, D, Pooley, J, Evans, R, Woulfe, S and Shortman, K (2002). Effects of administration of progenipoietin 1, Flt-3 ligand, granulocyte colony-stimulating factor, and pegylated granulocyte-macrophage colony-stimulating factor on dendritic cell subsets in mice. Blood 99: 21222130.CrossRefGoogle ScholarPubMed
Oldstone, MB, Race, R, Thomas, D, Lewicki, H, Homann, D, Smelt, S, Holz, A, Koni, P, Lo, D, Chesebro, B and Flavell, R (2002). Lymphotoxin-alpha- and lymphotoxin-beta-deficient mice differ in susceptibility to scrapie: evidence against dendritic cell involvement in neuroinvasion. Journal of Virology 76: 43574363.CrossRefGoogle ScholarPubMed
Paglia, P, Medina, E, Arioli, I, Guzman, CA and Colombo, MP (1998). Gene transfer in dendritic cells, induced by oral DNA vaccination with Salmonella typhimurium, results in protective immunity against a murine fibrosarcoma. Blood 92: 31723176.CrossRefGoogle ScholarPubMed
Paillot, R, Laval, F, Audonnet, JC, Andreoni, C and Juillard, V (2001). Functional and phenotypic characterization of distinct porcine dendritic cells derived from peripheral blood monocytes. Immunology 102: 396404.CrossRefGoogle ScholarPubMed
Paschen, A, Dittmar, KE, Grenningloh, R, Rohde, M, Schadendorf, D, Domann, E, Chakraborty, T and Weiss, S (2000). Human dendritic cells infected by Listeria monocytogenes: induction of maturation, requirements for phagolysosomal escape and antigen presentation capacity. European Journal of Immunology 30: 34473456.3.0.CO;2-M>CrossRefGoogle ScholarPubMed
Pichyangkul, S, Saengkrai, P, Yongvanitchit, K, Limsomwong, C, Gettayacamin, M, Walsh, DS, Stewart, VA, Ballou, WR and Heppner, DG (2001). Isolation and characterization of rhesus blood dendritic cells using flow cytometry. Journal of Immunological Methods 252: 1523.CrossRefGoogle ScholarPubMed
Piguet, V and Blauvelt, A (2002). Essential roles for dendritic cells in the pathogenesis and potential treatment of HIV disease. Journal of Investigative Dermatology 119: 365369.CrossRefGoogle ScholarPubMed
Pinchuk, LM, Grouard-Vogel, G, Magaletti, DM, Doty, RT, Andrews, RG and Clark, EA (1999). Isolation and characterization of macaque dendritic cells from CD34(+) bone marrow progenitors. Cellular Immunology 196: 3440.CrossRefGoogle ScholarPubMed
Pinchuk, LM, Boyd, BL, Kruger, EF, Roditi, I and Furger, A (2003). Bovine dendritic cells generated from monocytes and bone marrow progenitors regulate immunoglobulin production in peripheral blood B cells. Comparative Immunology, Microbiology and Infectious Diseases 26: 233249.CrossRefGoogle ScholarPubMed
Pohlmann, S, Baribaud, F and Doms, RW (2001). DC-SIGN and DC-SIGNR: helping hands for HIV. Trends in Immunology 22: 643646.CrossRefGoogle ScholarPubMed
Ponte-Sucre, A, Heise, D and Moll, H (2001). Leishmania major lipophosphoglycan modulates the phenotype and inhibits migration of murine Langerhans cells. Immunology 104: 462467.CrossRefGoogle ScholarPubMed
Porcelli, SA and Modlin, RL (1999). The CD1 system: antigen-presenting molecules for T cell recognition of lipids and glycolipids. Annual Review of Immunology 17: 297329.CrossRefGoogle Scholar
Pron, B, Boumaila, C, Jaubert, F, Berche, P, Milon, G, Geissmann, F and Gaillard, JL (2001). Dendritic cells are early cellular targets of Listeria monocytogenes after intestinal delivery and are involved in bacterial spread in the host. Cell Microbiology 3: 331340.CrossRefGoogle ScholarPubMed
Pulendran, B, Smith, JL, Caspary, G, Brasel, K, Pettit, D, Maraskovsky, E and Maliszewski, CR (1999). Distinct dendritic cell subsets differentially regulate the class of immune response in vivo. Proceedings of the National Academy of Sciences of the United States of America 96: 10361041.CrossRefGoogle ScholarPubMed
Qi, H, Popov, V and Soong, L (2001). Leishmania amazonensis-dendritic cell interactions in vitro and the priming of parasite-specific CD4(+) T cells in vivo. Journal of Immunology 167: 45344542.CrossRefGoogle ScholarPubMed
Qureshi, ST, Lariviere, L, Leveque, G, Clermont, S, Moore, KJ, Gros, P and Malo, D (1999). Endotoxin-tolerant mice have mutations in Toll-like receptor 4 (Tlr4). Journal of Experimental Medicine 189: 615625.CrossRefGoogle ScholarPubMed
Ratta, M, Fagnoni, F, Curti, A, Vescovini, R, Sansoni, P, Oliviero, B, Fogli, M, Ferri, E, Della Cuna, GR, Tura, S, Baccarani, M and Lemoli, RM (2002). Dendritic cells are functionally defective in multiple myeloma: the role of interleukin-6. Blood 100: 230237.CrossRefGoogle ScholarPubMed
Reis e Sousa, C, Yap, G, Schulz, O, Rogers, N, Schito, M, Aliberti, J, Hieny, S and Sher, A (1999). Paralysis of dendritic cell IL-12 production by microbial products prevents infection-induced immunopathology. Immunity 11: 637647.CrossRefGoogle ScholarPubMed
Renjifo, X, Howard, C, Kerkhofs, P, Denis, M, Urbain, J, Moser, M and Pastoret, PP (1997). Purification and characterization of bovine dendritic cells from peripheral blood. Veterinary Immunology and Immunopathology 60: 7788.CrossRefGoogle ScholarPubMed
Rescigno, M, Urbano, M, Valzasina, B, Francolini, M, Rotta, G, Bonasio, R, Granucci, F, Kraehenbuhl, JP and Ricciardi-Castagnoli, P (2001). Dendritic cells express tight junction proteins and penetrate gut epithelial monolayers to sample bacteria. Nature Immunology 2: 361367.CrossRefGoogle ScholarPubMed
Rogers, AB, Mathiason, CK and Hoover, EA (2002). Immunohistochemical localization of feline immunodeficiency virus using native species antibodies. American Journal of Pathology 161: 11431151.CrossRefGoogle ScholarPubMed
Ryan, S, Tiley, L, McConnell, I and Blacklaws, B (2000). Infection of dendritic cells by the Maedi-Visna lentivirus. Journal of Virology 74: 1009610103.CrossRefGoogle ScholarPubMed
Sacks, D and Sher, A (2002). Evasion of innate immunity by parasitic protozoa. Nature Immunology 3: 10411047.CrossRefGoogle ScholarPubMed
Salio, M, Cerundolo, V and Lanzavecchia, A (2000). Dendritic cell maturation is induced by mycoplasma infection but not by necrotic cells. European Journal of Immunology 30: 705708.3.0.CO;2-P>CrossRefGoogle Scholar
Schmitz, M, Rohayem, J, Paul, R, Weigle, B, Stein, A and Rieber, EP (2002). Quantification of antigen-reactive T cells by a modified ELISPOT assay based on freshly isolated blood dendritic cells. Journal of Clinical Laboratory Analysis 16: 3036.CrossRefGoogle ScholarPubMed
Scott, P and Hunter, CA (2002). Dendritic cells and immunity to leishmaniasis and toxoplasmosis. Current Opinion in Immunology 14: 466470.CrossRefGoogle ScholarPubMed
Seixas, E, Cross, C, Quin, S and Langhorne, J (2001). Direct activation of dendritic cells by the malaria parasite, Plasmodium chabaudi chabaudi. European Journal of Immunology 31: 29702978.3.0.CO;2-S>CrossRefGoogle ScholarPubMed
Shortman, K and Liu, YJ (2002). Mouse and human dendritic cell subtypes. Nature Reviews. Immunology 2: 151161.CrossRefGoogle ScholarPubMed
Siedek, E, Little, S, Mayall, S, Edington, N and Hamblin, A (1997). Isolation and characterisation of equine dendritic cells. Veterinary Immunology and Immunopathology 60: 1531.CrossRefGoogle ScholarPubMed
Siedek, EM, Whelan, M, Edington, N and Hamblin, A (1999). Equine herpesvirus type 1 infects dendritic cells in vitro: stimulation of T lymphocyte proliferation and cytotoxicity by infected dendritic cells. Veterinary Immunology and Immunopathology 67: 1732.CrossRefGoogle ScholarPubMed
Sigurdson, CJ, Barillas-Mury, C, Miller, MW, Oesch, B, van Keulen, LJ, Langeveld, JP and Hoover, EA (2002). PrP(CWD) lymphoid cell targets in early and advanced chronic wasting disease of mule deer. Journal of General Virology 83: 26172628.CrossRefGoogle ScholarPubMed
Song, W, Kong, HL, Carpenter, H, Torii, H, Granstein, R, Rafii, S, Moore, MA and Crystal, RG (1997). Dendritic cells genetically modified with an adenovirus vector encoding the cDNA for a model antigen induce protective and therapeutic antitumor immunity. Journal of Experimental Medicine 186: 12471256.CrossRefGoogle Scholar
Sparwasser, T, Koch, ES, Vabulas, RM, Heeg, K, Lipford, GB, Ellwart, JW and Wagner, H (1998). Bacterial DNA and immunostimulatory CpG oligonucleotides trigger maturation and activation of murine dendritic cells. European Journal of Immunology 28: 20452054.3.0.CO;2-8>CrossRefGoogle ScholarPubMed
Specht, JM, Wang, G, Do, MT, Lam, JS, Royal, RE, Reeves, ME, Rosenberg, SA and Hwu, P (1997). Dendritic cells retrovirally transduced with a model antigen gene are therapeutically effective against established pulmonary metastases. Journal of Experimental Medicine 186: 12131221.CrossRefGoogle Scholar
Stacey, KJ and Blackwell, JM (1999). Immunostimulatory DNA as an adjuvant in vaccination against Leishmania major. Infection and Immunity 67: 37193726.CrossRefGoogle ScholarPubMed
Steinbach, F, Borchers, K, Ricciardi-Castagnoli, P, Ludwig, H, Stingl, G and Elbe-Burger, A (1998). Dendritic cells presenting equine herpesvirus-1 antigens induce protective anti-viral immunity. Journal of General Virology 79: 30053014.CrossRefGoogle ScholarPubMed
Steinman, RM and Nussenzweig, MC (2002). Avoiding horror autotoxicus: the importance of dendritic cells in peripheral T cell tolerance. Proceedings of the National Academy of Sciences of the United States of America 99: 351358.CrossRefGoogle ScholarPubMed
Stenger, S, Niazi, KR and Modlin, RL (1998). Down-regulation of CD1 on antigen-presenting cells by infection with Mycobacterium tuberculosis. Journal of Immunology 161: 35823588.CrossRefGoogle ScholarPubMed
Su, H, Messer, R, Whitmire, W, Fischer, E, Portis, JC and Caldwell, HD (1998). Vaccination against chlamydial genital tract infection after immunization with dendritic cells pulsed ex vivo with nonviable chlamydiae. Journal of Experimental Medicine 188: 809818.CrossRefGoogle ScholarPubMed
Subklewe, M, Chahroudi, A, Bickham, K, Larsson, M, Kurilla, MG, Bhardwaj, N and Steinman, RM (1999). Presentation of Epstein–Barr virus latency antigens to CD8(+), interferon-gamma-secreting, T lymphocytes. European Journal of Immunology 29: 39954001.3.0.CO;2-E>CrossRefGoogle ScholarPubMed
Sur, S, Wild, JS, Choudhury, BK, Sur, N, Alam, R and Klinman, DM (1999). Long term prevention of allergic lung inflammation in a mouse model of asthma by CpG oligodeoxynucleotides. Journal of Immunology 162: 62846293.CrossRefGoogle Scholar
Tailleux, L, Schwartz, O, Herrmann, JL, Pivert, E, Jackson, M, Amara, A, Legres, L, Dreher, D, Nicod, LP, Gluckman, JC, Lagrange, PH, Gicquel, B and Neyrolles, O (2003). DC-SIGN is the major Mycobacterium tuberculosis receptor on human dendritic cells. Journal of Experimental Medicine 197: 121127.CrossRefGoogle ScholarPubMed
Takeda, K, Kaisho, T and Akira, S (2003). Toll-like receptors. Annual Review of Immunology 21: 335376.CrossRefGoogle ScholarPubMed
Takeuchi, O, Hoshino, K, Kawai, T, Sanjo, H, Takada, H, Ogawa, T, Takeda, K and Akira, S (1999). Differential roles of TLR2 and TLR4 in recognition of gram-negative and gram-positive bacterial cell wall components. Immunity 11: 443451.CrossRefGoogle ScholarPubMed
Thurner, B, Haendle, I, Roder, C, Dieckmann, D, Keikavoussi, P, Jonuleit, H, Bender, A, Maczek, C, Schreiner, D, von den Driesch, P, Brocker, EB, Steinman, RM, Enk, A, Kampgen, E and Schuler, G (1999). Vaccination with mage-3A1 peptide-pulsed mature, monocyte-derived dendritic cells expands specific cytotoxic T cells and induces regression of some metastases in advanced stage IV melanoma. Journal of Experimental Medicine 190: 16691678.CrossRefGoogle ScholarPubMed
Timmerman, JM and Levy, R (1999). Dendritic cell vaccines for cancer immunotherapy. Annual Review of Medicine 50: 507529.CrossRefGoogle ScholarPubMed
Tsuji, S, Matsumoto, M, Takeuchi, O, Akira, S, Azuma, I, Hayashi, A, Toyoshima, K and Seya, T (2000). Maturation of human dendritic cells by cell wall skeleton of Mycobacterium bovis bacillus Calmette–Guerin: involvement of toll-like receptors. Infection and Immunity 68: 68836890.CrossRefGoogle ScholarPubMed
Turnbull, E and MacPherson, G (2001). Immunobiology of dendritic cells in the rat. Immunological Reviews 184: 5868.CrossRefGoogle ScholarPubMed
Urban, BC, Ferguson, DJ, Pain, A, Willcox, N, Plebanski, M, Austyn, JM and Roberts, DJ (1999). Plasmodium falciparum-infected erythrocytes modulate the maturation of dendritic cells. Nature 400: 7377.CrossRefGoogle ScholarPubMed
Van Overtvelt, L, Vanderheyde, N, Verhasselt, V, Ismaili, J, De Vos, L, Goldman, M, Willems, F and Vray, B (1999). Trypanosoma cruzi infects human dendritic cells and prevents their maturation: inhibition of cytokines, HLA-DR, and costimulatory molecules. Infection and Immunity 67: 40334040.CrossRefGoogle ScholarPubMed
Verthelyi, D, Kenney, RT, Seder, RA, Gam, AA, Friedag, B and Klinman, DM (2002). CpG oligodeoxynucleotides as vaccine adjuvants in primates. Journal of Immunology 168: 16591663.CrossRefGoogle ScholarPubMed
von Stebut, E, Belkaid, Y, Jakob, T, Sacks, DL and Udey, MC (1998). Uptake of Leishmania major amastigotes results in activation and interleukin 12 release from murine skin-derived dendritic cells: implications for the initiation of anti-Leishmania immunity. Journal of Experimental Medicine 188: 15471552.CrossRefGoogle ScholarPubMed
von Stebut, E, Belkaid, Y, Nguyen, BV, Cushing, M, Sacks, DL and Udey, MC (2000). Leishmania major-infected murine langerhans cell-like dendritic cells from susceptible mice release IL-12 after infection and vaccinate against experimental cutaneous leishmaniasis. European Journal of Immunology 30: 34983506.3.0.CO;2-6>CrossRefGoogle ScholarPubMed
Walker, PS, Scharton-Kersten, T, Krieg, AM, Love-Homan, L, Rowton, ED, Udey, MC and Vogel, JC (1999). Immunostimulatory oligodeoxynucleotides promote protective immunity and provide systemic therapy for leishmaniasis via IL-12- and IFN-gamma-dependent mechanisms. Proceedings of the National Academy of Sciences of the United States of America 96: 69706975.CrossRefGoogle ScholarPubMed
Werling, D, Hope, JC, Chaplin, P, Collins, RA, Taylor, G and Howard, CJ (1999). Involvement of caveolae in the uptake of respiratory syncytial virus antigen by dendritic cells. Journal of Leukocyte Biology 66: 5058.CrossRefGoogle ScholarPubMed
Werling, D, Collins, RA, Taylor, G and Howard, CJ (2002). Cytokine responses of bovine dendritic cells and T cells following exposure to live or inactivated bovine respiratory syncytial virus. Journal of Leukocyte Biology 72: 297304.CrossRefGoogle ScholarPubMed
Werts, C, Tapping, RI, Mathison, JC, Chuang, TH, Kravchenko, V, Saint Girons, I, Haake, DA, Godowski, PJ, Hayashi, F, Ozinsky, A, Underhill, DM, Kirschning, CJ, Wagner, H, Aderem, A, Tobias, PS and Ulevitch, RJ (2001). Leptospiral lipopolysaccharide activates cells through a TLR2-dependent mechanism. Nature Immunology 2: 346352.CrossRefGoogle ScholarPubMed
Whelan, M, Harnett, MM, Houston, KM, Patel, V, Harnett, W and Rigley, KP (2000). A filarial nematode-secreted product signals dendritic cells to acquire a phenotype that drives development of Th2 cells. Journal of Immunology 164: 64536460.CrossRefGoogle ScholarPubMed
Wick, MJ (2002). The role of dendritic cells during Salmonella infection. Current Opinion in Immunology 14: 437443.CrossRefGoogle ScholarPubMed
Yoshimura, A, Lien, E, Ingalls, RR, Tuomanen, E, Dziarski, R and Golenbock, D (1999). Cutting edge: recognition of Gram-positive bacterial cell wall components by the innate immune system occurs via Toll-like receptor 2. Journal of Immunology 163: 15.CrossRefGoogle ScholarPubMed
Yrlid, U, Svensson, M, Hakansson, A, Chambers, BJ, Ljunggren, HG and Wick, MJ (2001). In vivo activation of dendritic cells and T cells during Salmonella enterica serovar Typhimurium infection. Infection and Immunity 69: 57265735.CrossRefGoogle Scholar
Yu Kimata, MT, Cella, M, Biggins, JE, Rorex, C, White, R, Hicks, S, Wilson, JM, Patel, PG, Allan, JS, Colonna, M and Kimata, JT (2002). Capture and transfer of simian immunodeficiency virus by macaque dendritic cells is enhanced by DC-SIGN. Journal of Virology 76: 1182711836.CrossRefGoogle ScholarPubMed
Zimmermann, S, Egeter, O, Hausmann, S, Lipford, GB, Rocken, M, Wagner, H and Heeg, K (1998). CpG oligodeoxynucleotides trigger protective and curative Th1 responses in lethal murine leishmaniasis. Journal of Immunology 160: 36273630.CrossRefGoogle ScholarPubMed
Zitvogel, L, Mayordomo, JI, Tjandrawan, T, DeLeo, AB, Clarke, MR, Lotze, MT and Storkus, WJ (1996). Therapy of murine tumors with tumor peptide-pulsed dendritic cells: dependence on T cells, B7 costimulation, and T helper cell 1-associated cytokines. Journal of Experimental Medicine 183: 8797.CrossRefGoogle Scholar