Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-13T01:54:21.185Z Has data issue: false hasContentIssue false

Translating ‘big data’: better understanding of host-pathogen interactions to control bacterial foodborne pathogens in poultry

Part of: Big Data

Published online by Cambridge University Press:  07 January 2020

Loïc Deblais
Affiliation:
Food Animal Health Research Program, Department of Veterinary Preventive Medicine, The Ohio State University, OARDC, Wooster, OH, USA
Dipak Kathayat
Affiliation:
Food Animal Health Research Program, Department of Veterinary Preventive Medicine, The Ohio State University, OARDC, Wooster, OH, USA
Yosra A. Helmy
Affiliation:
Food Animal Health Research Program, Department of Veterinary Preventive Medicine, The Ohio State University, OARDC, Wooster, OH, USA
Gary Closs Jr
Affiliation:
Food Animal Health Research Program, Department of Veterinary Preventive Medicine, The Ohio State University, OARDC, Wooster, OH, USA
Gireesh Rajashekara*
Affiliation:
Food Animal Health Research Program, Department of Veterinary Preventive Medicine, The Ohio State University, OARDC, Wooster, OH, USA
*
Author for correspondence: Gireesh Rajashekara, Food Animal Health Research Program, Department of Veterinary Preventive Medicine, The Ohio State University, OARDC, Wooster, OH, USA. E-mail: [email protected]

Abstract

Recent technological advances has led to the generation, storage, and sharing of colossal sets of information (‘big data’), and the expansion of ‘omics’ in science. To date, genomics/metagenomics, transcriptomics, proteomics, and metabolomics are arguably the most ground breaking approaches in food and public safety. Here we review some of the recent studies of foodborne pathogens (Campylobacter spp., Salmonella spp., and Escherichia coli) in poultry using big data. Genomic/metagenomic approaches have reveal the importance of the gut microbiota in health and disease. They have also been used to identify, monitor, and understand the epidemiology of antibiotic-resistance mechanisms and provide concrete evidence about the role of poultry in human infections. Transcriptomics studies have increased our understanding of the pathophysiology and immunopathology of foodborne pathogens in poultry and have led to the identification of host-resistance mechanisms. Proteomic/metabolomic approaches have aided in identifying biomarkers and the rapid detection of low levels of foodborne pathogens. Overall, ‘omics' approaches complement each other and may provide, at least in part, a solution to our current food-safety issues by facilitating the development of new rapid diagnostics, therapeutic drugs, and vaccines to control foodborne pathogens in poultry. However, at this time most ‘omics' approaches still remain underutilized due to their high cost and the high level of technical skills required.

Type
Review Article
Copyright
Copyright © Cambridge University Press 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Agersø, Y, Aarestrup, FM, Pedersen, K, Seyfarth, AM, Struve, T and Hasman, H (2012) Prevalence of extended-spectrum cephalosporinase (ESC)-producing Escherichia coli in Danish slaughter pigs and retail meat identified by selective enrichment and association with cephalosporin usage. The Journal of Antimicrobial Chemotherapy 67, 582588.CrossRefGoogle ScholarPubMed
Agyare, C, Boamah, VE, Osei, CNZ and Osei, FB (2018). Antibiotic use in poultry production and its effects on bacterial resistance. Antimicrobial Resistance – A Global Threat 3, 3551.Google Scholar
Alba, P, Leekitcharoenphon, P, Franco, A, Feltrin, F, Ianzano, A, Caprioli, A, Stravino, F, Hendriksen, RS, Bortolaia, V and Battisti, A (2018) Molecular epidemiology of mcr-encoded colistin resistance in Enterobacteriaceae from food-producing animals in Italy revealed through the EU harmonized antimicrobial resistance monitoring. Frontiers in Microbiology 9, 110.CrossRefGoogle ScholarPubMed
Ali, Y, Islam, MA, Muzahid, NH, Sikder, MOF, Hossain, MA and Marzan, LW (2017) Characterization, prevalence and antibiogram study of Staphylococcus aureus in poultry. Asian Pacific Journal of Tropical Biomedicine 7, 253256.CrossRefGoogle Scholar
Alonso, CA, Zarazaga, M, Ben Sallem, R, Jouini, A, Ben Slama, K and Torres, C (2017) Antibiotic resistance in Escherichia coli in husbandry animals: the African perspective. Letters in Applied Microbiology 64, 318334.CrossRefGoogle ScholarPubMed
Andersen, SC, Kiil, K, Harder, CB, Josefsen, MH, Persson, S, Nielsen, EM and Hoorfar, J (2017) Towards diagnostic metagenomics of Campylobacter in fecal samples. BMC Microbiology 17, 18.CrossRefGoogle ScholarPubMed
Anderson, NW, Buchan, BW, Riebe, KM, Parsons, LN, Gnacinski, S and Ledeboer, NA (2012) Effects of solid-medium type on routine identification of bacterial isolates by use of matrix-assisted laser desorption ionization-time of flight mass spectrometry. Journal of Clinical Microbiology 50, 10081013.CrossRefGoogle ScholarPubMed
Andrews, J (2013). Gut Bacteria on 97 Percent of Retail Chicken Breasts. Available at http://www.foodsafetynews.com/2013/12/consumer-reports-gut-bacteria-on-97-percent-of-retail-chicken/ (Accessed 20 July 2018).Google Scholar
Asakura, H, Kawamoto, K, Murakami, S, Tachibana, M, Kurazono, H, Makino, S, Yamamoto, S and Igimi, S (2016) Ex vivo proteomics of Campylobacter jejuni 81-176 reveal that FabG affects fatty acid composition to alter bacterial growth fitness in the chicken gut. Research in Microbiology 167, 6371.CrossRefGoogle ScholarPubMed
Ashida, H, Mimuro, H, Ogawa, M, Kobayashi, T, Sanada, T, Kim, T and Sasakawa, C (2011) Cell death and infection: a double-edged sword for host and pathogen survival. The Journal of Cell Biology 195, 931942.CrossRefGoogle ScholarPubMed
Awasthi, MK, Chen, H, Awasthi, SK, Duan, Y, Liu, T, Pandey, A, Varjani, S and Zhang, Z (2019) Application of metagenomic analysis for detection of the reduction in the antibiotic resistance genes (ARGs) by the addition of clay during poultry manure composting. Chemosphere 220, 137145.CrossRefGoogle ScholarPubMed
Basler, C, Nguyen, T-A, Anderson, TC, Hancock, T and Behravesh, CB (2016) Outbreaks of human Salmonella infections associated with live poultry, United States, 1990–2014. Emerging Infectious Diseases 22, 17051711.CrossRefGoogle ScholarPubMed
Behravesh, CB, Williams, IT and Tauxe, RV (2012) Emerging foodborne pathogens and problems: expanding prevention efforts before slaughter or harvest, National Academies Press (USA). Available at https://www.ncbi.nlm.nih.gov/books/NBK114501/.Google Scholar
Bergholz, TM, Moreno Switt, AI and Wiedmann, M (2014) Omics approaches in food safety: fulfilling the promise? Trends in Microbiology 22, 275281.CrossRefGoogle ScholarPubMed
Berndt, A and Methner, U (2001) Gamma/delta T cell response of chickens after oral administration of attenuated and non-attenuated Salmonella Typhimurium strains. Veterinary Immunology and Immunopathology 78, 143161.CrossRefGoogle ScholarPubMed
Blaak, H, Hamidjaja, RA, van Hoek, AHAM, de Heer, L, de Husman, AMR and Schets, FM (2014) Detection of extended-spectrum beta-lactamase (ESBL)-producing Escherichia coli on flies at poultry farms. Applied and Environmental Microbiology 80, 239246.CrossRefGoogle ScholarPubMed
Bonten, MJM and Mevius, D (2015) Less evidence for an important role of food-producing animals as source of antibiotic resistance in humans. Clinical Infectious Diseases 60, 1867.CrossRefGoogle ScholarPubMed
Borda-Molina, D, Seifert, J and Camarinha-Silva, A (2018) Current perspectives of the chicken gastrointestinal tract and its microbiome. Computational and Structural Biotechnology Journal 16, 131139.CrossRefGoogle ScholarPubMed
Borowiak, M, Fischer, J, Hammerl, JA, Hendriksen, RS, Szabo, I and Malorny, B (2017) Identification of a novel transposon-associated phosphoethanolamine transferase gene, mcr-5, conferring colistin resistance in d-tartrate fermenting Salmonella enterica subsp. enterica serovar Paratyphi B. The Journal of Antimicrobial Chemotherapy 72, 33173324.CrossRefGoogle ScholarPubMed
Brenner, S (2010) Sequences and consequences. Philosophical Transactions of the Royal Society B: Biological Sciences 365, 207212.CrossRefGoogle ScholarPubMed
Bringer, M-A, Barnich, N, Glasser, A-L, Bardot, O and Darfeuille-Michaud, A (2005) Htra stress protein is involved in intramacrophagic replication of adherent and invasive Escherichia coli strain LF82 isolated from a patient with Crohn's disease. Infection and Immunity 73, 712721.CrossRefGoogle Scholar
Cain, JA, Dale, AL, Niewold, P and Cordwell, SJ (2019) Proteomics reveals multiple phenotypes associated with N-linked glycosylation in Campylobacter jejuni. Molecular & Cellular Proteomics 18, 715734.CrossRefGoogle ScholarPubMed
Cannatelli, A, Giani, T, Antonelli, A, Principe, L, Luzzaro, F and Rossolini, GM (2016) First detection of the mcr-1 colistin resistance gene in Escherichia coli in Italy. Antimicrobial Agents and Chemotherapy 60, 32573258.CrossRefGoogle ScholarPubMed
Carattoli, A, Villa, L, Feudi, C, Curcio, L, Orsini, S, Luppi, A, Pezzotti, G and Magistrali, CF (2017) Novel plasmid-mediated colistin resistance mcr-4 gene in Salmonella and Escherichia coli, Italy 2013, Spain and Belgium, 2015 to 2016. Euro Surveillance: Bulletin Europeen Sur Les Maladies Transmissibles = European Communicable Disease Bulletin 22, 15.Google Scholar
Casadevall, A and Pirofski, L (2000) Host–pathogen interactions: basic concepts of microbial commensalism, colonization, infection, and disease. Infection and Immunity 68, 65116518.CrossRefGoogle Scholar
Casadevall, A and Pirofski, L (2001) Host–pathogen interactions: the attributes of virulence. The Journal of Infectious Diseases 184, 337344.CrossRefGoogle Scholar
Casella, T, Nogueira, MCL, Saras, E, Haenni, M and Madec, J-Y (2017) High prevalence of ESBLs in retail chicken meat despite reduced use of antimicrobials in chicken production, France. International Journal of Food Microbiology 257, 271275.CrossRefGoogle ScholarPubMed
Cevallos-Cevallos, JM, Danyluk, MD and Reyes-De-Corcuera, JI (2011) GC-MS based metabolomics for rapid simultaneous detection of Escherichia coli O157:H7, Salmonella Typhimurium, Salmonella Muenchen, and Salmonella Hartford in ground beef and chicken. Journal of Food Science 76, M238M246.CrossRefGoogle Scholar
Chai, SJ, Cole, D, Nisler, A and Mahon, BE (2017) Poultry: the most common food in outbreaks with known pathogens, United States, 1998–2012. Epidemiology & Infection 145, 316325.CrossRefGoogle ScholarPubMed
Chang, C, Li, M, Guo, C, Ding, Y, Xu, K, Han, M, He, F and Zhu, Y (2019) PANDA: a comprehensive and flexible tool for quantitative proteomics data analysis. Bioinformatics (Oxford, England) 35, 898900.CrossRefGoogle ScholarPubMed
Chiang, H-I, Swaggerty, CL, Kogut, MH, Dowd, SE, Li, X, Pevzner, IY and Zhou, H (2008) Gene expression profiling in chicken heterophils with Salmonella Enteritidis stimulation using a chicken 44K Agilent microarray. BMC Genomics 9, 526.CrossRefGoogle Scholar
Chiou, C-S, Chen, Y-T, Wang, Y-W, Liu, YY, Kuo, HC, Tu, YH, Lin, AC, Liao, YS and Hong, Y-P (2017) Dissemination of mcr-1-carrying plasmids among colistin-resistant Salmonella strains from humans and food-producing animals in Taiwan. Antimicrobial Agents and Chemotherapy 61, 14.CrossRefGoogle ScholarPubMed
Choi, KY, Lee, TK and Sul, WJ (2015) Metagenomic analysis of chicken gut microbiota for improving metabolism and health of chickens – a review. Asian-Australasian Journal of Animal Sciences 28, 12171225.CrossRefGoogle ScholarPubMed
Cornwell, M, Vangala, M, Taing, L, Herbert, Z, Koster, J, Li, B, Sun, H, Li, T, Zhang, J, Qiu, X, Pun, M, Jeselsohn, R, Brown, M, Liu, ZS and Long, HW (2018) VIPER: Visualization Pipeline for RNA-seq, a Snakemake workflow for efficient and complete RNA-seq analysis. BMC Bioinformatics 19, 135.CrossRefGoogle ScholarPubMed
Crépin, S, Lamarche, MG, Garneau, P, Seguin, J, Proulx, J, Dozois, CM and Harel, J (2008) Genome-wide transcriptional response of an avian pathogenic Escherichia coli (APEC) pst mutant. BMC Genomics 9, 568.CrossRefGoogle ScholarPubMed
Daehre, K, Projahn, M, Semmler, T, Roesler, U and Friese, A (2017) Extended-spectrum beta-lactamase-/AmpC beta-lactamase-producing Enterobacteriaceae in broiler farms: transmission dynamics at farm level. Microbial Drug Resistance 24, 511518.CrossRefGoogle ScholarPubMed
Davalos, D and Akassoglou, K (2012) Fibrinogen as a key regulator of inflammation in disease. Seminars in Immunopathology 34, 4362.CrossRefGoogle Scholar
Dawkins, MS (2017) Animal welfare and efficient farming: is conflict inevitable? Animal Production Science 57, 201208.CrossRefGoogle Scholar
De Schutter, JW, Morrison, JP, Morrison, MJ, Ciulli, A and Imperiali, B (2017) Targeting bacillosamine biosynthesis in bacterial pathogens: development of inhibitors to a bacterial amino-sugar acetyltransferase from Campylobacter jejuni. Journal of Medicinal Chemistry 60, 20992118.CrossRefGoogle ScholarPubMed
Deblais, L, Helmy, YA, Kathayat, D, Huang, H, Miller, SA and Rajashekara, G (2018 a) Novel imidazole and methoxybenzylamine growth inhibitors affecting Salmonella cell envelope integrity and its persistence in chickens. Scientific Reports 8, 13381.CrossRefGoogle ScholarPubMed
Deblais, L, Lorentz, B, Scaria, J, Nagaraja, KV, Nisar, M, Lauer, D, Voss, S and Rajashekara, G (2018 b) Comparative genomic studies of Salmonella Heidelberg isolated from chicken- and Turkey-associated farm environmental samples. Frontiers in Microbiology 9, 111.CrossRefGoogle ScholarPubMed
Deidda, M, Piras, C, Dessalvi, CC, Locci, E, Barberini, L, Torri, F, Ascedu, F, Atzori, L and Mercuro, G (2015) Metabolomic approach to profile functional and metabolic changes in heart failure. Journal of Translational Medicine 13, 297.CrossRefGoogle ScholarPubMed
DelVecchio, VG, Sabato, MA, Trichilo, J, Dake, C, Grewal, P and Alefantis, T (2010) Proteomics for the development of vaccines and therapeutics. Critical Reviews in Immunology 30, 239254.CrossRefGoogle ScholarPubMed
Dewey-Mattia, D, Manikonda, K, Hall, AJ, Wise, ME and Crowe, SJ (2018) Surveillance for foodborne disease outbreaks – United States, 2009–2015. MMWR Surveillance Summaries 67, 111.CrossRefGoogle ScholarPubMed
Di Pilato, V, Arena, F, Tascini, C, Cannatelli, A, De Angelis, LH, Fortunato, S, Giani, T, Menichetti, F and Rossolini, GM (2016) mcr-1.2, a new mcr variant carried on a transferable plasmid from a colistin-resistant KPC carbapenemase-producing Klebsiella pneumoniae strain of sequence Type 512. Antimicrobial Agents and Chemotherapy 60, 56125615.CrossRefGoogle ScholarPubMed
Diarra, MS and Malouin, F (2014) Antibiotics in Canadian poultry productions and anticipated alternatives. Frontiers in Microbiology 5, 115.CrossRefGoogle ScholarPubMed
Dierikx, CM, van der Goot, JA, Smith, HE, Kant, A and Mevius, DJ (2013) Presence of ESBL/AmpC-producing Escherichia coli in the broiler production pyramid: a descriptive study. PLoS ONE 8, 18.CrossRefGoogle ScholarPubMed
Dinçer, AH and Baysal, T (2004) Decontamination techniques of pathogen bacteria in meat and poultry. Critical Reviews in Microbiology 30, 197204.CrossRefGoogle ScholarPubMed
Ding, S, Han, X, Li, J, Gao, W, Chen, Z and Feng, Y (2018) Discovery of multi-drug resistant, MCR-1 and ESBL-coproducing ST117 Escherichia coli from diseased chickens in northeast China. Science Bulletin 63, 10591066.CrossRefGoogle Scholar
Doeschl-Wilson, AB and Kyriazakis, I (2012) Should we aim for genetic improvement in host resistance or tolerance to infectious pathogens? Frontiers in Genetics 3, 12.CrossRefGoogle ScholarPubMed
Drury, RE, O'Connor, D and Pollard, AJ (2017) The clinical application of microRNAs in infectious disease. Frontiers in Immunology 8, 117.CrossRefGoogle ScholarPubMed
ECDC/EFSA/EMA first joint report on the integrated analysis of the consumption of antimicrobial agents and occurrence of antimicrobial resistance in bacteria from humans and food-producing animals (2015) EFSA Journal 13, 4006.CrossRefGoogle Scholar
Eeckhaut, V, Wang, J, Van Parys, A, Haesebrouck, F, Joossens, M, Falony, G, Raes, J, Ducatelle, R and Van Immerseel, F (2016) The probiotic Butyricicoccus pullicaecorum reduces feed conversion and protects from potentially harmful intestinal microorganisms and necrotic enteritis in broilers. Frontiers in Microbiology 7, 19.CrossRefGoogle ScholarPubMed
EFSA Panel on Biological Hazards (BIOHAZ) (2011) Scientific Opinion on Campylobacter in broiler meat production: control options and performance objectives and/or targets at different stages of the food chain: Campylobacter in broiler meat. EFSA Journal 9, 2105.CrossRefGoogle Scholar
Ellis, DI, Eccles, R, Xu, Y, Griffen, J, Muhamadali, H, Matousek, P, Goodall, I and Goodacre, R (2017) Through-container, extremely low concentration detection of multiple chemical markers of counterfeit alcohol using a handheld SORS device. Scientific Reports 7, 12082.CrossRefGoogle ScholarPubMed
European Food Safety Authority (EFSA) (2004) Opinion of the Scientific Panel on biological hazards (BIOHAZ) related to the use of vaccines for the control of Salmonella in poultry. EFSA Journal 2, 114.CrossRefGoogle Scholar
Falgenhauer, L, Imirzalioglu, C, Oppong, K, Akenten, CW, Hogan, B, Krumkamp, R, Poppert, S, Levermann, V, Schwengers, O, Sarpong, N, Owusu-Dabo, E, May, J and Eibach, D (2019) Detection and characterization of ESBL-producing Escherichia coli from humans and poultry in Ghana. Frontiers in Microbiology 9, 18.CrossRefGoogle ScholarPubMed
FAO (ed.). (2017) Building Resilience for Food and Food Security. Rome: FAO.Google Scholar
Fernandes, MR, McCulloch, JA, Vianello, MA, Moura, Q, Perez-Chaparro, PJ, Esposito, F, Sartori, L, Dropa, M, Matte, MH, Lira, DP and Lincopan, N (2016) First report of the globally disseminated IncX4 plasmid carrying the mcr-1 gene in a colistin-resistant Escherichia coli sequence Type 101 isolate from a human infection in Brazil. Antimicrobial Agents and Chemotherapy 60, 64156417.CrossRefGoogle Scholar
Fiehn, O (2002) Metabolomics – the link between genotypes and phenotypes. Plant Molecular Biology 48, 155171.CrossRefGoogle ScholarPubMed
Fife, MS, Howell, JS, Salmon, N, Hocking, PM, van Diemen, PM, Jones, MA, Stevens, MP and Kaiser, P (2011) Genome-wide SNP analysis identifies major QTL for Salmonella colonization in the chicken. Animal Genetics 42, 134140.CrossRefGoogle ScholarPubMed
Foley, SL, Nayak, R, Hanning, IB, Johnson, TJ, Han, J and Ricke, SC (2011) Population dynamics of Salmonella enterica serotypes in commercial egg and poultry production. Applied and Environmental Microbiology 77, 42734279.CrossRefGoogle ScholarPubMed
Foley, SL, Johnson, TJ, Ricke, SC, Nayak, R and Danzeisen, J (2013) Salmonella pathogenicity and host adaptation in chicken-associated serovars. Microbiology and Molecular Biology Reviews 77, 582607.CrossRefGoogle ScholarPubMed
Forgetta, V, Rempel, H, Malouin, F, Vaillancourt, R Jr, Topp, E, Dewar, K and Diarra, MS (2012) Pathogenic and multidrug-resistant Escherichia fergusonii from broiler chicken. Poultry Science 91, 512525.CrossRefGoogle ScholarPubMed
Furtula, V, Farrell, EG, Diarrassouba, F, Rempel, H, Pritchard, J and Diarra, MS (2010) Veterinary pharmaceuticals and antibiotic resistance of Escherichia coli isolates in poultry litter from commercial farms and controlled feeding trials. Poultry Science 89, 180188.CrossRefGoogle ScholarPubMed
Garcia-Perez, I, Posma, JM, Gibson, R, Chambers, ES, Hansen, TH, Vestergaard, H, Hansen, T, Beckmann, M, Pedersen, O, Elliott, P, Stamler, J, Nicholson, JK, Draper, J, Mathers, JC, Holmes, E and Frost, G (2017) Objective assessment of dietary patterns by use of metabolic phenotyping: a randomised, controlled, crossover trial. The Lancet. Diabetes & Endocrinology 5, 184195.CrossRefGoogle ScholarPubMed
Garvis, SG, Tipton, SL and Konkel, ME (1997) Identification of a functional homolog of the Escherichia coli and Salmonella Typhimurium cysM gene encoding O-acetylserine sulfhydrylase B in Campylobacter jejuni. Gene 185, 6367.CrossRefGoogle ScholarPubMed
Gatto, L, Hansen, KD, Hoopmann, MR, Hermjakob, H, Kohlbacher, O and Beyer, A (2015) Testing and Validation of Computational Methods for Mass Spectrometry (brief-report). doi: 10.1021/acs.jproteome.5b00852.CrossRefGoogle Scholar
Geirnaert, A, Steyaert, A, Eeckhaut, V, Debruyne, B, Arends, JB, Van Immerseel, F, Boon, N and Van de Wiele, T (2014) Butyricicoccus pullicaecorum, a butyrate producer with probiotic potential, is intrinsically tolerant to stomach and small intestine conditions. Anaerobe 30(suppl. C), 7074.CrossRefGoogle ScholarPubMed
Gonçalves-Tenório, A, Silva, BN, Rodrigues, V, Cadavez, V and Gonzales-Barron, U (2018) Prevalence of pathogens in poultry meat: a meta-analysis of European published surveys. Foods (Basel, Switzerland) 7, 116.Google ScholarPubMed
Gonzalez Ronquillo, M and Angeles Hernandez, JC (2017) Antibiotic and synthetic growth promoters in animal diets: review of impact and analytical methods. Food Control 72, 255267.CrossRefGoogle Scholar
Graves, PR and Haystead, TAJ (2002) Molecular biologist's guide to proteomics. Microbiology and Molecular Biology Reviews 66, 3963.CrossRefGoogle ScholarPubMed
Guabiraba, R and Schouler, C (2015) Avian colibacillosis: still many black holes. FEMS Microbiology Letters 362, fnv118.CrossRefGoogle ScholarPubMed
Guo, X, Stedtfeld, RD, Hedman, H, Eisenberg, JNS, Trueba, G, Yin, D, Tiedje, JM and Zhang, L (2018) Antibiotic resistome associated with small-scale poultry production in rural Ecuador. Environmental Science & Technology 52, 81658172.CrossRefGoogle ScholarPubMed
Hammarlöf, DL, Kröger, C, Owen, SV, Canals, R, Lacharme-Lora, L, Wenner, N, Schager, AE, Wells, TJ, Henderson, IR, Wigley, P, Hokamp, K, Feasey, NA, Gordon, MA and Hinton, JCD (2018) Role of a single noncoding nucleotide in the evolution of an epidemic African clade of Salmonella. Proceedings of the National Academy of Sciences of the United States of America 115, E2614E2623.CrossRefGoogle ScholarPubMed
Hansen, KH, Bortolaia, V, Nielsen, CA, Schonning, K, Agerso, Y and Guardabassi, L (2016) Host-specific patterns of genetic diversity among IncI1-Iγ and IncK plasmids encoding CMY-2 β-lactamase in Escherichia coli isolates from humans, poultry meat, poultry, and dogs in Denmark. Applied and Environmental Microbiology 82, 47054714.CrossRefGoogle ScholarPubMed
Hasenstein, JR, Hassen, AT, Dekkers, JCM and Lamont, SJ (2008) High resolution, advanced intercross mapping of host resistance to Salmonella colonization. Animal Genomics for Animal Health 132, 213218.CrossRefGoogle ScholarPubMed
Hasman, H, Hammerum, AM, Hansen, F, Hendriksen, RS, Olesen, B, Agerso, Y, Zankari, E, Leekitcharoenphon, P, Stegger, M, Kaas, RS, Cavaco, LM, Hansen, DS, Aarestrup, FM and Skov, RL (2015) Detection of mcr-1 encoding plasmid-mediated colistin-resistant Escherichia coli isolates from human bloodstream infection and imported chicken meat, Denmark 2015. Euro Surveillance: Bulletin Europeen Sur Les Maladies Transmissibles = European Communicable Disease Bulletin 20, 15.Google ScholarPubMed
Havelaar, AH, Kirk, MD, Torgerson, PR, Gibb, HJ, Hald, T, Lake, RJ, Praet, N, Bellinger, DC, de Silva, NR, Gargouri, N, Speybroeck, N, Cawthorne, A, Mathers, C, Stein, C, Angulo, FJ, Devleesschauwer, B and Group, on behalf of W. H. O. F. D. B. E. R. (2015) World Health Organization global estimates and regional comparisons of the burden of foodborne disease in 2010. PLoS Medicine 12, e1001923.CrossRefGoogle ScholarPubMed
Helbig, ET, Opitz, B and Sander, LE (2013) Adjuvant immunotherapies as a novel approach to bacterial infections. Immunotherapy 5, 365381.CrossRefGoogle ScholarPubMed
Helmy, M, Awad, M and Mosa, KA (2016) Limited resources of genome sequencing in developing countries: challenges and solutions. Applied & Translational Genomics 9, 1519.CrossRefGoogle ScholarPubMed
Heredia, N and García, S (2018) Animals as sources of food-borne pathogens: a review. Animal Nutrition 4, 250255.CrossRefGoogle ScholarPubMed
Hermans, D, Van Deun, K, Martel, A, Van Immerseel, F, Messens, W, Heyndrickx, M, Haesebrouck, F and Pasmans, F (2011) Colonization factors of Campylobacter jejuni in the chicken gut. Veterinary Research 42, 82.CrossRefGoogle ScholarPubMed
Hernández, M, Iglesias, MR, Rodríguez-Lázaro, D, Gallardo, A, Quijada, N, Miguela-Villoldo, P, Campos, MJ, Piriz, S, Lopez-Orozco, G, de Frutos, C, Sáez, JL, Ugarte-Ruiz, M, Dominguez, L and Quesada, A (2017) Co-occurrence of colistin-resistance genes mcr-1 and mcr-3 among multidrug-resistant Escherichia coli isolated from cattle, Spain, September 2015. Euro Surveillance: Bulletin Europeen Sur Les Maladies Transmissibles = European Communicable Disease Bulletin 22, 15.Google Scholar
Hiett, KL, Stintzi, A, Andacht, TM, Kuntz, RL and Seal, BS (2008) Genomic differences between Campylobacter jejuni isolates identify surface membrane and flagellar function gene products potentially important for colonizing the chicken intestine. Functional & Integrative Genomics 8, 407420.CrossRefGoogle ScholarPubMed
Hoffmann, S and Scallan, E (2017) Chapter 2 – epidemiology, cost, and risk analysis of foodborne disease. In Dodd, CER, Aldsworth, T, Stein, RA, Cliver, DO and Riemann, HP (eds), Foodborne Diseases, 3rd Edn. Academic Press, Cambridge, MA, pp. 3163.CrossRefGoogle Scholar
Horvatić, A, Guillemin, N, Kaab, H, McKeegan, D, O'Reilly, E, Bain, M, Kules, J and Eckersall, PD (2019) Quantitative proteomics using tandem mass tags in relation to the acute phase protein response in chicken challenged with Escherichia coli lipopolysaccharide endotoxin. Journal of Proteomics 192, 6477.CrossRefGoogle ScholarPubMed
Huang, H, Liu, A, Wu, H, Ansari, AR, Wang, J, Huang, X, Zhao, X, Peng, K, Zhong, J and Liu, H (2016) Transcriptome analysis indicated that Salmonella lipopolysaccharide-induced thymocyte death and thymic atrophy were related to TLR4-FOS/JUN pathway in chicks. BMC Genomics 17, 111.CrossRefGoogle ScholarPubMed
Huijbers, PMC, Graat, EAM, Haenen, APJ, van Santen, MG, van Essen-Zandbergen, A, Mevius, DJ, van Duijkeren, E and van Hoek, AHAM (2014) Extended-spectrum and AmpC β-lactamase-producing Escherichia coli in broilers and people living and/or working on broiler farms: prevalence, risk factors and molecular characteristics. The Journal of Antimicrobial Chemotherapy 69, 26692675.CrossRefGoogle ScholarPubMed
Hwang, B, Lee, JH and Bang, D (2018) Single-cell RNA sequencing technologies and bioinformatics pipelines. Experimental & Molecular Medicine 50, 9696.CrossRefGoogle ScholarPubMed
Ihnatova, I and Budinska, E (2015) ToPASeq: an R package for topology-based pathway analysis of microarray and RNA-Seq data. BMC Bioinformatics 16, 350.CrossRefGoogle Scholar
Jadhav, SR, Shah, RM, Karpe, AV, Morrison, PD, Kouremenos, K, Beale, DJ and Palombo, EA (2018) Detection of foodborne pathogens using proteomics and metabolomics-based approaches. Frontiers in Microbiology 9, 113.CrossRefGoogle ScholarPubMed
Jadhav, SR, Shah, RM, Karpe, AV, Beale, DJ, Kouremenos, KA and Palombo, EA (2019) Identification of putative biomarkers specific to foodborne pathogens using metabolomics. Methods in Molecular Biology (Clifton, N.J.) 1918, 149164.CrossRefGoogle ScholarPubMed
Jagusztyn-Krynicka, EK, Dadlez, M, Grabowska, A and Roszczenko, P (2009) Proteomic technology in the design of new effective antibacterial vaccines. Expert Review of Proteomics 6, 315330.CrossRefGoogle ScholarPubMed
Jasovský, D, Littmann, J, Zorzet, A and Cars, O (2016) Antimicrobial resistance – a threat to the world's sustainable development. Upsala Journal of Medical Sciences 121, 159164.CrossRefGoogle ScholarPubMed
Jasson, V, Jacxsens, L, Luning, P, Rajkovic, A and Uyttendaele, M (2010) Alternative microbial methods: an overview and selection criteria. Food Microbiology 27, 710730.CrossRefGoogle ScholarPubMed
Jean Beltran, PM, Federspiel, JD, Sheng, X and Cristea, IM (2017) Proteomics and integrative omic approaches for understanding host–pathogen interactions and infectious diseases. Molecular Systems Biology 13, 922.CrossRefGoogle ScholarPubMed
Jia, X, Nie, Q, Zhang, X, Nolan, LK and Lamont, SJ (2016) Novel microRNA involved in host response to avian pathogenic Escherichia coli identified by deep sequencing and integration analysis. Infection and Immunity 85, 113.Google ScholarPubMed
Johnson, TJ, Bielak, EM, Fortini, D, Hansen, LH, Hasman, H, Debroy, C, Nolan, LK and Carattoli, A (2012) Expansion of the IncX plasmid family for improved identification and typing of novel plasmids in drug-resistant Enterobacteriaceae. Plasmid 68, 4350.CrossRefGoogle ScholarPubMed
Johnson, BK, Scholz, MB, Teal, TK and Abramovitch, RB (2016) SPARTA: simple program for automated reference-based bacterial RNA-seq transcriptome analysis. BMC Bioinformatics 17, 66.CrossRefGoogle ScholarPubMed
Johnson, TJ, Shank, JM and Johnson, JG (2017) Current and potential treatments for reducing Campylobacter colonization in animal hosts and disease in humans. Frontiers in Microbiology 8, 114.CrossRefGoogle ScholarPubMed
Jørgensen, F, Bailey, R, Williams, S, Henderson, P, Wareing, DR, Bolton, FJ, Frost, JA, Ward, L and Humphrey, TJ (2002) Prevalence and numbers of Salmonella and Campylobacter spp. on raw, whole chickens in relation to sampling methods. International Journal of Food Microbiology 76, 151164.CrossRefGoogle ScholarPubMed
Kaddurah-Daouk, R, Kristal, BS and Weinshilboum, RM (2008) Metabolomics: a global biochemical approach to drug response and disease. Annual Review of Pharmacology and Toxicology 48, 653683.CrossRefGoogle ScholarPubMed
Kagambèga, A, Lienemann, T, Aulu, L, Traore, AS, Barro, N, Siitonen, A and Haukka, K (2013) Prevalence and characterization of Salmonella enterica from the feces of cattle, poultry, swine and hedgehogs in Burkina Faso and their comparison to human Salmonella isolates. BMC Microbiology 13, 253.CrossRefGoogle ScholarPubMed
Kagambèga, A, Lienemann, T, Frye, JG, Barro, N and Haukka, K (2018) Whole genome sequencing of multidrug-resistant Salmonella enterica serovar Typhimurium isolated from humans and poultry in Burkina Faso. Tropical Medicine and Health 46, 15.CrossRefGoogle ScholarPubMed
Kariuki, S, Okoro, C, Kiiru, J, Njoroge, S, Omuse, G, Langridge, G, Kingsley, RA, Dougan, G and Revathi, G (2015) Ceftriaxone-resistant Salmonella enterica serotype Typhimurium sequence type 313 from Kenyan patients is associated with the blaCTX-M-15 Gene on a novel IncHI2 plasmid. Antimicrobial Agents and Chemotherapy 59, 31333139.CrossRefGoogle ScholarPubMed
Kassem, II, Helmy, YA, Kathayat, D, Candelero-Rueda, RA, Kumar, A, Deblais, L, Huang, HC, Sahin, O, Zhang, Q and Rajashekara, G (2017) Nonculturability might underestimate the occurrence of Campylobacter in broiler litter. Foodborne Pathogens and Disease 14, 472477.CrossRefGoogle ScholarPubMed
Kingsley, RA, Msefula, CL, Thomson, NR, Kariuki, S, Holt, KE, Gordon, MA, Harris, D, Clarke, L, Whitehead, S, Sangal, V, Marsh, K, Achtman, M, Molyneux, ME, Cormican, M, Parkhill, J, MacLennan, CA, Heyderman, RS and Dougan, G (2009) Epidemic multiple drug resistant Salmonella Typhimurium causing invasive disease in sub-Saharan Africa have a distinct genotype. Genome Research 19, 22792287.CrossRefGoogle ScholarPubMed
Kluytmans, J (2017) Plasmid-encoded colistin resistance: mcr-one, two, three and counting. Euro Surveillance: Bulletin Europeen Sur Les Maladies Transmissibles = European Communicable Disease Bulletin 22, 13.Google ScholarPubMed
Kong, K-F, Schneper, L and Mathee, K (2010) Beta-lactam antibiotics: from antibiosis to resistance and bacteriology. APMIS: Acta Pathologica, Microbiologica, et Immunologica Scandinavica 118, 136.CrossRefGoogle ScholarPubMed
Kumar, S, Chen, C, Indugu, N, Werlang, GO, Singh, M, Kim, WK and Thippareddi, H (2018) Effect of antibiotic withdrawal in feed on chicken gut microbial dynamics, immunity, growth performance and prevalence of foodborne pathogens. PLoS One 13, e0192450.CrossRefGoogle ScholarPubMed
Kumari, S, Kumar, A, Samant, M, Sundar, S, Singh, N and Dube, A (2008) Proteomic approaches for discovery of new targets for vaccine and therapeutics against visceral leishmaniasis. Proteomics – Clinical Applications 2, 372386.CrossRefGoogle ScholarPubMed
Kusebauch, U, Hernández-Castellano, LE, Bislev, SL, Moritz, RL, Røntved, CM and Bendixen, E (2018) Selected reaction monitoring mass spectrometry of mastitis milk reveals pathogen-specific regulation of bovine host response proteins. Journal of Dairy Science 101, 65326541.CrossRefGoogle ScholarPubMed
Laube, H, Friese, A, von Salviati, C, Guerra, B, Kasbohrer, L, Kreienbrock, L and Roesler, U (2013) Longitudinal monitoring of extended-spectrum-beta-lactamase/AmpC-producing Escherichia coli at German broiler chicken fattening farms. Applied and Environmental Microbiology 79, 48154820.CrossRefGoogle ScholarPubMed
Lawrence, DT, Dobmeier, SG, Bechtel, LK and Holstege, CP (2007) Food poisoning. Emergency Medicine Clinics of North America 25, 357373, abstract ix.CrossRefGoogle ScholarPubMed
Le, VTM and Diep, BA (2013) Selected insights from application of whole-genome sequencing for outbreak investigations. Current Opinion in Critical Care 19, 432439.CrossRefGoogle ScholarPubMed
Lee, N, Kwon, KY, Oh, SK, Chang, H-J, Chun, HS and Choi, S-W (2014) A multiplex PCR assay for simultaneous detection of Escherichia coli O157:H7, Bacillus cereus, Vibrio parahaemolyticus, Salmonella spp., Listeria monocytogenes, and Staphylococcus aureus in Korean ready-to-eat food. Foodborne Pathogens and Disease 11, 574580.CrossRefGoogle ScholarPubMed
Leekitcharoenphon, P, Friis, C, Zankari, E, Svendsen, CA, Price, LB, Rahmani, M, Herrero-Fresno, A, Fashae, K, Vandenberg, O, Aarestrup, FM and Hendriksen, RS (2013) Genomics of an emerging clone of Salmonella serovar Typhimurium ST313 from Nigeria and the Democratic Republic of Congo. Journal of Infection in Developing Countries 7, 696706.CrossRefGoogle ScholarPubMed
Leveridge, M, Collier, L, Edge, C, Hardwicke, P, Leavens, B, Ratcliffe, S, Rees, M, Stasi, LP, Nadin, A and Reith, AD (2016) A high-throughput screen to identify LRRK2 kinase inhibitors for the treatment of Parkinson's disease using RapidFire mass spectrometry. Journal of Biomolecular Screening 21, 145155.CrossRefGoogle ScholarPubMed
Leverstein-van Hall, MA, Dierikx, CM, Stuart, JC, Voets, GM, van den Munckhof, MP, van Essen-Zandbergen, A, Platteel, T, Fluit, AC, van de Sande-Bruinsma, N, Scharinga, J, Bonten, MJ and Mevius, DJ (2011) Dutch patients, retail chicken meat and poultry share the same ESBL genes, plasmids and strains. Clinical Microbiology and Infection 17, 873880.CrossRefGoogle ScholarPubMed
Ley, B, Le Hello, S, Lunguya, O, Lejon, V, Muyembe, JJ, Weill, FX and Jacobs, J (2014) Invasive Salmonella enterica serotype Typhimurium infections, Democratic Republic of the Congo, 2007–2011. Emerging Infectious Diseases 20, 701704.CrossRefGoogle ScholarPubMed
Li, H and Zhu, J (2017) Targeted metabolic profiling rapidly differentiates Escherichia coli and Staphylococcus aureus at species and strain level. Rapid Communications in Mass Spectrometry: RCM 31, 16691676.CrossRefGoogle ScholarPubMed
Li, J, Hao, H, Cheng, G, Liu, C, Ahmed, S, Shabbir, MAB, Hussain, HI, Dai, M and Yuan, Z (2017) Microbial shifts in the intestinal microbiota of Salmonella infected chickens in response to enrofloxacin. Frontiers in Microbiology 8, 114.Google ScholarPubMed
Li, P, Fan, W, Everaert, N, Liu, R, Li, Q, Zheng, M, Cui, H, Zhao, G and Wen, J (2018) Messenger RNA sequencing and pathway analysis provide novel insights into the susceptibility to Salmonella Enteritidis infection in chickens. Frontiers in Genetics 9, 256256.CrossRefGoogle ScholarPubMed
Linscott, AJ (2011) Food-borne illnesses. Clinical Microbiology Newsletter 33, 4145.CrossRefGoogle Scholar
Lithgow, JK, Hayhurst, EJ, Cohen, G, Aharonowitz, Y and Foster, SJ (2004) Role of a cysteine synthase in Staphylococcus aureus. Journal of Bacteriology 186, 15791590.CrossRefGoogle ScholarPubMed
Liu, Y-Y, Wang, Y, Walsh, TR, Yi, LX, Zhang, R, Spencer, J, Doi, Y, Tian, G, Dong, B, Huang, X, Yu, LF, Gu, D, Ren, H, Chen, X, Lv, L, He, D, Zhou, H, Liang, Z, Liu, JH and Shen, J (2016) Emergence of plasmid-mediated colistin resistance mechanism MCR-1 in animals and human beings in China: a microbiological and molecular biological study. The Lancet Infectious Diseases 16, 161168.CrossRefGoogle ScholarPubMed
Liu, CM, Stegger, M, Aziz, M, Johnson, TJ, Waits, K, Nordstrom, L, Gauld, L, Weaver, B, Rolland, D, Statham, S, Horwinski, J, Sariya, S, Davis, GS, Sokurenko, E, Keim, P, Johnson, JR and Price, LB (2018 a) Escherichia coli ST131-H22 as a foodborne uropathogen. MBio 9, e0047018.CrossRefGoogle ScholarPubMed
Liu, L, Lin, L, Zheng, L, Tang, H, Fan, X, Xue, N, Li, M, Liu, M and Li, X (2018 b) Cecal microbiome profile altered by Salmonella enterica, serovar Enteritidis inoculation in chicken. Gut Pathogens 10, 114.CrossRefGoogle ScholarPubMed
Lowe, R, Shirley, N, Bleackley, M, Dolan, S and Shafee, T (2017) Transcriptomics technologies. PLoS Computational Biology 13, e1005457.CrossRefGoogle ScholarPubMed
Luangtongkum, T, Morishita, TY, Ison, AJ, Huang, S, McDermott, PF and Zhang, Q (2006) Effect of conventional and organic production practices on the prevalence and antimicrobial resistance of Campylobacter spp. in poultry. Applied and Environmental Microbiology 72, 36003607.CrossRefGoogle ScholarPubMed
Ma, L, Xia, Y, Li, B, Tiedje, JM and Zhang, T (2016) Metagenomic assembly reveals hosts of antibiotic resistance genes and the shared resistome in pig, chicken, and human feces. Environmental Science & Technology 50, 420427.CrossRefGoogle ScholarPubMed
Manzoni, C, Kia, DA, Vandrovcova, J, Hardy, J, Wood, NW, Lewis, PA and Ferrari, R (2018) Genome, transcriptome and proteome: the rise of omics data and their integration in biomedical sciences. Briefings in Bioinformatics 19, 286302.CrossRefGoogle ScholarPubMed
Mariano, DCB, Pereira, FL, Aguiar, EL, Oliveira, LC, Benevides, L, Guimaraes, LC, Folador, EL, Sousa, TJ, Ghosh, P, Barh, D, Figueiredo, HCP, Silva, A, Ramos, RTJ and Azevedo, VAC (2016) SIMBA: a web tool for managing bacterial genome assembly generated by Ion PGM sequencing technology. BMC Bioinformatics 17, 456.CrossRefGoogle ScholarPubMed
Maron, DF, Smith, TJ and Nachman, KE (2013) Restrictions on antimicrobial use in food animal production: an international regulatory and economic survey. Globalization and Health 9, 48.CrossRefGoogle ScholarPubMed
Martinović, T, Andjelković, U, Gajdošik, , Rešetar, D and Josić, D (2016) Foodborne pathogens and their toxins. Journal of Proteomics 147, 226235.CrossRefGoogle ScholarPubMed
Mather, AE, Lawson, B, de Pinna, E, Wigley, P, Parkhill, J, Thomson, NR, Page, AJ, Holmes, MA and Paterson, GK (2016) Genomic analysis of Salmonella enterica serovar Typhimurium from wild Passerines in England and Wales. Applied and Environmental Microbiology 82, 67286735.CrossRefGoogle ScholarPubMed
Matsumoto, Y, Izumiya, H, Sekizuka, T, Kuroda, M and Ohnishi, M (2014) Characterization of blaTEM-52-carrying plasmids of extended-Spectrum-β-lactamase-producing Salmonella enterica isolates from chicken meat with a common supplier in Japan. Antimicrobial Agents and Chemotherapy 58, 75457547.CrossRefGoogle ScholarPubMed
Matulova, M, Stepanova, H, Sisak, F, Havlickova, H, Faldynova, M, Kyrova, K and Rychlik, I (2012) Cytokine signaling in splenic leukocytes from vaccinated and non-vaccinated chickens after intravenous infection with Salmonella Enteritidis. PLoS One 7, e32346.CrossRefGoogle ScholarPubMed
McGann, P, Snesrud, E, Maybank, R, Corey, B, Ong, AC, Clifford, R, Hinkle, M, Whitman, T, Lesho, E and Schaecher, KE (2016) Escherichia coli harboring mcr-1 and blaCTX-M on a novel IncF plasmid: first report of mcr-1 in the United States. Antimicrobial Agents and Chemotherapy 60, 44204421.CrossRefGoogle ScholarPubMed
Mehdi, Y, Létourneau-Montminy, MP, Gaucher, ML, Chorfi, Y, Suresh, G, Rouissi, T, Brar, SK, Cote, C, Ramirez, AA and Godbout, S (2018) Use of antibiotics in broiler production: global impacts and alternatives. Animal Nutrition 4, 170178.CrossRefGoogle ScholarPubMed
Monteville, MR, Yoon, JE and Konkel, ME (2003) Maximal adherence and invasion of INT 407 cells by Campylobacter jejuni requires the CadF outer-membrane protein and microfilament reorganization. Microbiology (Reading, England) 149(Pt 1), 153165.CrossRefGoogle ScholarPubMed
Muhamadali, H, Weaver, D, Subaihi, A, AlMasoud, N, Trivedi, DK, Ellis, DI, Linton, D and Goodacre, R (2016) Chicken, beams, and Campylobacter: rapid differentiation of foodborne bacteria via vibrational spectroscopy and MALDI-mass spectrometry. The Analyst 141, 111122.CrossRefGoogle ScholarPubMed
Munk, P, Knudsen, BE, Lukjancenko, O, Duarte, ASR, Van Gompel, L, Luiken, REC, Smit, LAM, Schmitt, H, Garcia, AD, Hansen, RB, Petersen, TN, Bossers, A, Ruppé, E; EFFORT Group, Lund, O, Hald, T, Pamp, SJ, Vigre, H, Heederik, D, Wagenaar, JA, Mevius, D and Aarestrup, FM (2018) Abundance and diversity of the faecal resistome in slaughter pigs and broilers in nine European countries. Nature Microbiology 3, 898.CrossRefGoogle ScholarPubMed
Naugle, AL, Barlow, KE, Eblen, DR, Teter, V and Umholtz, R (2006) U.S. food safety and inspection service testing for Salmonella in selected raw meat and poultry products in the United States, 1998 through 2003: analysis of set results. Journal of Food Protection 69, 26072614.CrossRefGoogle ScholarPubMed
Newell, DG and Fearnley, C (2003) Sources of Campylobacter colonization in broiler chickens. Applied and Environmental Microbiology 69, 43434351.CrossRefGoogle ScholarPubMed
Nisar, M, Kassem, II, Rajashekara, G, Goyal, SM, Lauer, D, Voss, S and Nagaraja, KV (2017 a) Genotypic relatedness and antimicrobial resistance of Salmonella Heidelberg isolated from chickens and turkeys in the midwestern United States. Journal of Veterinary Diagnostic Investigation 29, 370375.CrossRefGoogle ScholarPubMed
Oakley, BB, Lillehoj, HS, Kogut, MH, Kogut, MH, Kim, WK, Maurer, JJ, Pedroso, A, Lee, MD, Collett, SR, Johnson, TJ and Cox, NA (2014) The chicken gastrointestinal microbiome. FEMS Microbiology Letters 360, 100112.CrossRefGoogle ScholarPubMed
Okamura, Y and Kinoshita, K (2018) Matataki: an ultrafast mRNA quantification method for large-scale reanalysis of RNA-Seq data. BMC Bioinformatics 19, 266.CrossRefGoogle ScholarPubMed
Oniciuc, EA, Likotrafiti, E, Alvarez-Molina, A, Prieto, M, Santos, JA and Alvarez-Ordóñez, A (2018) The present and future of whole genome sequencing (WGS) and whole metagenome sequencing (WMS) for surveillance of antimicrobial resistant microorganisms and antimicrobial resistance genes across the food chain. Genes 9, 128.Google ScholarPubMed
Osei Sekyere, J (2016) Current state of resistance to antibiotics of last-resort in South Africa: a review from a public health perspective. Frontiers in Public Health 4, 111.CrossRefGoogle ScholarPubMed
Osman, KM, Kappell, AD, Orabi, A, Al-Maary, KS, Mubarak, A, Dawoud, TM, Hemeg, HA, Mousse, IMI, Hessain, AH, Yousef, HMY and Hristova, KR (2018) Poultry and beef meat as potential seedbeds for antimicrobial resistant enterotoxigenic Bacillus species: a materializing epidemiological and potential severe health hazard. Scientific Reports 8, 11600.CrossRefGoogle ScholarPubMed
Overdevest, I, Willemsen, I, Rijnsburger, M, Eustace, A, Xu, L, Hawkey, P, Heck, M, Savelkoul, P, Vandenbroucke-Grauls, C, van der Zwaluw, K, Huijsdens, X and Kluytmans, J (2011) Extended-spectrum β-lactamase genes of Escherichia coli in chicken meat and humans, the Netherlands. Emerging Infectious Diseases 17, 12161222.CrossRefGoogle ScholarPubMed
Packialakshmi, B, Liyanage, R, Lay, JO, Makkar, SK and Rath, NC (2016) Proteomic changes in chicken plasma induced by Salmonella Typhimurium lipopolysaccharides. Proteomics Insights 7, 19.CrossRefGoogle ScholarPubMed
Pal, RR, More, RP and Purohit, HJ (2018) Bioinformatics tools for shotgun metagenomic data analysis. In Purohit, HJ, Kalia, VC and More, RP (eds), Soft Computing for Biological Systems. Singapore: Springer Singapore, pp. 91110.CrossRefGoogle Scholar
Palyada, K, Sun, Y-Q, Flint, A, Butcher, J, Naikare, H and Stintzi, A (2009) Characterization of the oxidative stress stimulon and PerR regulon of Campylobacter jejuni. BMC Genomics 10, 481.CrossRefGoogle ScholarPubMed
Pang, T and Weatherall, D (2012) Genomics and world health: a decade on. The Lancet 379, 18531854.CrossRefGoogle Scholar
Park, SH, Kim, SA, Rubinelli, PM, Roto, SM and Ricke, SC (2017) Microbial compositional changes in broiler chicken cecal contents from birds challenged with different Salmonella vaccine candidate strains. Vaccine 35, 32043208.CrossRefGoogle ScholarPubMed
Parsons, BN, Humphrey, S, Salisbury, AM, Mikoleit, J, Hinton, JC, Gordon, MA and Wigley, P (2013) Invasive non-typhoidal Salmonella Typhimurium ST313 are not host-restricted and have an invasive phenotype in experimentally infected chickens. PLoS Neglected Tropical Diseases 7, e2487.CrossRefGoogle Scholar
Pietsch, M, Irrgang, A and Roschanski, N, Brenner Michael, G, Hamprecht, A, Rieber, H, Käsbohrer, A, Schwarz, S, Rösler, U, Kreienbrock, L, Pfeifer, Y, Fuchs, S, Werner, G and RESET Study Group (2018) Whole genome analyses of CMY-2-producing Escherichia coli isolates from humans, animals and food in Germany. BMC Genomics 19, 601.CrossRefGoogle ScholarPubMed
Pires, SM, de Knegt, L and Hald, T (2011) Estimation of the relative contribution of different food and animal sources to human Salmonella infections in the European Union. EFSA Supporting Publications 8, 184E.CrossRefGoogle Scholar
Poyart, C, Mugnier, P, Quesne, G, Berche, P and Trieu-Cuot, P (1998) A novel extended-spectrum TEM-type beta-lactamase (TEM-52) associated with decreased susceptibility to moxalactam in Klebsiella pneumoniae. Antimicrobial Agents and Chemotherapy 42, 108113.CrossRefGoogle ScholarPubMed
Press, G (n.d.) Cleaning big data: most time-consuming, least enjoyable data science task, survey says. Available at https://www.forbes.com/sites/gilpress/2016/03/23/data-preparation-most-time-consuming-least-enjoyable-data-science-task-survey-says/ (Accessed 27 January 2019).Google Scholar
Prestinaci, F, Pezzotti, P and Pantosti, A (2015) Antimicrobial resistance: a global multifaceted phenomenon. Pathogens and Global Health 109, 309318.CrossRefGoogle ScholarPubMed
Psifidi, A, Fife, M, Howell, J, Matika, O, van Dieman, M, Kuo, R, Smith, J, Hocking, PM, Salmon, N, Jones, MA, Hum, DA, Banos, G, Stevens, MP and Kaiser, P (2016) The genomic architecture of resistance to Campylobacter jejuni intestinal colonisation in chickens. BMC Genomics 17, 293.CrossRefGoogle ScholarPubMed
Qu, A, Brulc, JM, Wilson, MK, Law, BF, Theoret, JR, Joens, LA, Konkel, ME, Angly, F, Dinsdale, EA, Edwards, RA, Nelson, KE and White, BA (2008) Comparative metagenomics reveals host specific metavirulomes and horizontal gene transfer elements in the chicken cecum microbiome. PLoS One 3, 119.CrossRefGoogle ScholarPubMed
Ramos, S, Silva, N, Hébraud, M, Santos, HM, Nunes-Miranda, JD, Pinto, L, Pereira, JE, Capelo, JL, Poeta, P and Igrejas, G (2016) Proteomics for drug resistance on the food chain? Multidrug-resistant Escherichia coli proteomes from slaughtered pigs. Omics: A Journal of Integrative Biology 20, 362374.CrossRefGoogle ScholarPubMed
Ranjan, R, Rani, A, Metwally, A, McGee, HS and Perkins, DL (2016) Analysis of the microbiome: advantages of whole genome shotgun versus 16S amplicon sequencing. Biochemical and Biophysical Research Communications 469, 967977.CrossRefGoogle ScholarPubMed
Rantsiou, K, Kathariou, S, Winkler, A, Skandamis, P, Saint-Cyr, MJ, Rouzeau-Szynalski, K and Amézquita, A (2018) Next generation microbiological risk assessment: opportunities of whole genome sequencing (WGS) for foodborne pathogen surveillance, source tracking and risk assessment. International Journal of Food Microbiology 287, 39.CrossRefGoogle ScholarPubMed
Relman, DA (2011) Microbial genomics and infectious diseases. New England Journal of Medicine 365, 347357.CrossRefGoogle ScholarPubMed
Roer, L, Hansen, F, Stegger, M, Sönksen, UW, Hasman, H and Hammerum, AM (2017) Novel mcr-3 variant, encoding mobile colistin resistance, in an ST131 Escherichia coli isolate from bloodstream infection, Denmark, 2014. Euro Surveillance: Bulletin Europeen Sur Les Maladies Transmissibles = European Communicable Disease Bulletin 22, 15.Google Scholar
Roser, M and Ritchie, H (2017) Food per person. Available at https://ourworldindata.org/food-per-person (Accessed 11 July 2018).Google Scholar
Rothrock, MJ, Davis, ML, Locatelli, A, Bodie, A, McIntosh, TG, Donaldson, JR and Ricke, SC (2017) Listeria occurrence in poultry flocks: detection and potential implications. Frontiers in Veterinary Science 4, 17.CrossRefGoogle ScholarPubMed
Rouger, A, Tresse, O and Zagorec, M (2017) Bacterial contaminants of poultry meat: sources, species, and dynamics. Microorganisms 5, 116.CrossRefGoogle ScholarPubMed
Ruiz, A (2017) The 80/20 data science dilemma. Available at https://www.infoworld.com/article/3228245/data-science/the-80-20-data-science-dilemma.html (Accessed 27 January 2019).Google Scholar
Sahin, O, Kassem, II, Shen, Z, Lin, J, Rajashekara, G and Zhang, Q (2015) Campylobacter in poultry: ecology and potential interventions. Avian Diseases 59, 185200.CrossRefGoogle ScholarPubMed
Salazar, JK, Wang, Y and Zhang, W (2017) Transcriptomics and proteomics of foodborne bacterial pathogens. In Deng, X, den Bakker, HC and Hendriksen, RS (eds), Applied Genomics of Foodborne Pathogens. Cham: Springer International Publishing, pp. 167200.CrossRefGoogle Scholar
Saliu, E-M, Vahjen, W and Zentek, J (2017) Types and prevalence of extended-spectrum beta-lactamase producing Enterobacteriaceae in poultry. Animal Health Research Reviews 18, 4657.CrossRefGoogle ScholarPubMed
Sandford, EE, Orr, M, Balfanz, E, Bowerman, N, Li, X, Zhou, H, Johnson, TJ, Kariyawasam, S, Lui, P, Nolan, LK and Lamont, SJ (2011) Spleen transcriptome response to infection with avian pathogenic Escherichia coli in broiler chickens. BMC Genomics 12, 469.CrossRefGoogle ScholarPubMed
Scallan, E, Hoekstra, RM, Angulo, FJ, Tauxe, RV, Widdowson, MA, Roy, SL, Jones, JL and Griffin, PM (2011) Foodborne illness acquired in the United States – major pathogens. Emerging Infectious Diseases 17, 715.CrossRefGoogle ScholarPubMed
Schokker, D, Smits, MA, Hoekman, AJW, Parmentier, HK and Rebel, JMJ (2010) Effects of Salmonella on spatial-temporal processes of jejunal development in chickens. Developmental and Comparative Immunology 34, 10901100.CrossRefGoogle ScholarPubMed
Schokker, D, de Koning, D-J, Rebel, JMJ and Smits, MA (2011 a) Shift in chicken intestinal gene association networks after infection with Salmonella. Comparative Biochemistry and Physiology. Part D, Genomics & Proteomics 6, 339347.CrossRefGoogle ScholarPubMed
Schokker, D, Smits, MA and Rebel, JM (2011 b) Jejunal gene expression patterns correlate with severity of systemic infection in chicken. BMC Proceedings 5, S4.CrossRefGoogle ScholarPubMed
Schokker, D, Peters, THF, Hoekman, AJW, Rebel, JMJ and Smits, MA (2012) Differences in the early response of hatchlings of different chicken breeding lines to Salmonella enterica serovar Enteritidis infection. Poultry Science 91, 346353.CrossRefGoogle ScholarPubMed
Schrijver, R, Stijntjes, M, Rodríguez-Baño, J, Tacconelli, E, Babu Rajendran, N and Voss, A (2018) Review of antimicrobial resistance surveillance programmes in livestock and meat in EU with focus on humans. Clinical Microbiology and Infection 24, 577590.CrossRefGoogle ScholarPubMed
Seal, BS, Hiett, KL, Kuntz, RL, Woolsey, R, Schegg, KM, Ard, M and Stintzi, A (2007) Proteomic analyses of a robust versus a poor chicken gastrointestinal colonizing isolate of Campylobacter jejuni. Journal of Proteome Research 6, 45824591.CrossRefGoogle ScholarPubMed
Sekelova, Z, Polansky, O, Stepanova, H, Fedr, R, Faldynova, M, Rychlik, I and Vlasatikova, L (2017) Different roles of CD4, CD8 and γδ T-lymphocytes in naive and vaccinated chickens during Salmonella Enteritidis infection. Proteomics 17, 19.CrossRefGoogle ScholarPubMed
Seng, P, Drancourt, M, Gouriet, F, La Scola, B, Fournier, PE, Rolain, JM and Raoult, D (2009) Ongoing revolution in bacteriology: routine identification of bacteria by matrix-assisted laser desorption ionization time-of-flight mass spectrometry. Clinical Infectious Diseases 49, 543551.CrossRefGoogle ScholarPubMed
Sethi, S and Brietzke, E (2015) Omics-based biomarkers: application of metabolomics in neuropsychiatric disorders. The International Journal of Neuropsychopharmacology 19, pyv096.CrossRefGoogle ScholarPubMed
Shaikh, S, Fatima, J, Shakil, S, Rizvi, SMD and Kamal, MA (2015) Antibiotic resistance and extended spectrum beta-lactamases: types, epidemiology and treatment. Saudi Journal of Biological Sciences 22, 90101.CrossRefGoogle ScholarPubMed
Shang, Y., Kumar, S., Oakley, B. and Kim, W. K. (2018). Chicken gut microbiota: importance and detection technology. Frontiers in Veterinary Science 5. doi: 10.3389/fvets.2018.00254.CrossRefGoogle ScholarPubMed
Singhal, N, Kumar, M, Kanaujia, PK and Virdi, JS (2015) MALDI-TOF mass spectrometry: an emerging technology for microbial identification and diagnosis. Frontiers in Microbiology 6, 791.CrossRefGoogle ScholarPubMed
Smet, A, Martel, A, Persoons, D, Dewulf, J, Heyndrickx, M, Catry, B, Herman, L, Haesebrouck, F and Butaye, P (2008) Diversity of extended-spectrum beta-lactamases and class C beta-lactamases among cloacal Escherichia coli isolates in Belgian broiler farms. Antimicrobial Agents and Chemotherapy 52, 12381243.CrossRefGoogle Scholar
Staedel, C and Darfeuille, F (2013) MicroRNAs and bacterial infection. Cellular Microbiology 15, 14961507.CrossRefGoogle ScholarPubMed
Stern, NJ, Cox, NA, Bailey, JS, Berrang, ME and Musgrove, MT (2001) Comparison of mucosal competitive exclusion and competitive exclusion treatment to reduce Salmonella and Campylobacter spp. colonization in broiler chickens. Poultry Science 80, 156160.CrossRefGoogle ScholarPubMed
Sun, J-S and Hahn, T-W (2012) Comparative proteomic analysis of Salmonella enterica serovars Enteritidis, Typhimurium and Gallinarum. The Journal of Veterinary Medical Science 74, 285291.CrossRefGoogle ScholarPubMed
Sun, H, Liu, P, Nolan, LK and Lamont, SJ (2015) Avian pathogenic Escherichia coli (APEC) infection alters bone marrow transcriptome in chickens. BMC Genomics 16, 690.CrossRefGoogle ScholarPubMed
Sun, J, Fang, L-X, Wu, Z, Deng, H, Yang, RS, Li, XP, Li, SM, Liao, XP, Feng, Y and Liu, Y-H (2017 a) Genetic analysis of the IncX4 plasmids: implications for a unique pattern in the mcr-1 acquisition. Scientific Reports 7, 424.CrossRefGoogle ScholarPubMed
Sun, P, Bi, Z, Nilsson, M, Zheng, B, Berglund, B, Stålsby Lundborg, C, Börjesson, S, Li, X, Chen, B, Yin, H and Nilsson, LE (2017 b) Occurrence of blaKPC-2, blaCTX-M, and mcr-1 in Enterobacteriaceae from well water in rural China. Antimicrobial Agents and Chemotherapy 61, 15.CrossRefGoogle ScholarPubMed
Tang, Y, Guest, JR, Artymiuk, PJ, Read, RC and Green, J (2004) Post-transcriptional regulation of bacterial motility by aconitase proteins. Molecular Microbiology 51, 18171826.CrossRefGoogle ScholarPubMed
te Pas, MF, Hulsegge, I, Schokker, D, Smits, MA, Fife, M, Zoorob, R, Endale, ML and Rebel, JM (2012) Meta-analysis of chicken – Salmonella infection experiments. BMC Genomics 13, 146.CrossRefGoogle ScholarPubMed
The 42 Vs of Big Data and Data Science (n.d.) Available at https://www.kdnuggets.com/2017/04/42-vs-big-data-data-science.html.Google Scholar
Timme, RE, Sanchez Leon, M and Allard, MW (2019) Utilizing the public GenomeTrakr database for foodborne pathogen traceback. Methods in Molecular Biology (Clifton, N.J.) 1918, 201212.CrossRefGoogle ScholarPubMed
Udhayavel, S, Thippichettypalayam Ramasamy, G, Gowthaman, V, Malmarugan, S and Senthilvel, K (2017) Occurrence of Clostridium perfringens contamination in poultry feed ingredients: isolation, identification and its antibiotic sensitivity pattern. Animal Nutrition 3, 309312.CrossRefGoogle ScholarPubMed
van Hemert, S, Hoekman, AJW, Smits, MA and Rebel, JMJ (2006) Early host gene expression responses to a Salmonella infection in the intestine of chickens with different genetic background examined with cDNA and oligonucleotide microarrays. Comparative Biochemistry and Physiology. Part D, Genomics & Proteomics 1, 292299.CrossRefGoogle ScholarPubMed
van Dijk, EL, Jaszczyszyn, Y, Naquin, D and Thermes, C (2018) The third revolution in sequencing technology. Trends in Genetics 34, 666681.CrossRefGoogle ScholarPubMed
Van Immerseel, F (2010) Stress-induced survival strategies enable Salmonella Enteritidis to persistently colonize the chicken oviduct tissue and cope with antimicrobial factors in egg white: a hypothesis to explain a pandemic. Gut Pathogens 2, 23.CrossRefGoogle ScholarPubMed
Van Immerseel, F, De Buck, J, Pasmans, F, Huyghebaert, G, Haesebrouck, F and Ducatelle, R (2004) Clostridium perfringens in poultry: an emerging threat for animal and public health. Avian Pathology: Journal of the W.V.P.A. 33, 537549.CrossRefGoogle ScholarPubMed
Veach, BT, Mudalige, TK, Barnes, PJ and Baker, CA (2019) Quantitative screening method for erythromycin and tylosin in honey using RapidFire mass spectrometry (Text). doi: info:doi/10.5740/jaoacint.18-0107.Google Scholar
Wain, J, Keddy, KH, Hendriksen, RS and Rubino, S (2013) Using next generation sequencing to tackle non-typhoidal Salmonella infections. Journal of Infection in Developing Countries 7, 15.CrossRefGoogle ScholarPubMed
Wales, A, Breslin, M, Carter, B, Sayers, R and Davies, R (2007) A longitudinal study of environmental Salmonella contamination in caged and free-range layer flocks. Avian Pathology: Journal of the W.V.P.A. 36, 187197.CrossRefGoogle ScholarPubMed
Wang, Y, Lv, Y, Cai, J, Schwarz, S, Cui, L, Hu, Z, Zhang, R, Li, J, Zhao, Q, He, T, Wang, D, Wang, Z, Shen, Y, Li, Y, Feßler, AT, Wu, C, Yu, H, Deng, X, Xia, X and Shen, J (2015) A novel gene, optrA, that confers transferable resistance to oxazolidinones and phenicols and its presence in Enterococcus faecalis and Enterococcus faecium of human and animal origin. The Journal of Antimicrobial Chemotherapy 70, 21822190.CrossRefGoogle ScholarPubMed
Wang, B, Yao, M, Lv, L, Ling, Z and Li, L (2017 a) The human microbiota in health and disease. Engineering 3, 7182.CrossRefGoogle Scholar
Wang, Y, Zhang, R, Li, J, Wu, Z, Yin, W, Schwarz, S, Tyrrell, JM, Zheng, Y, Wang, S, Shen, Z, Liu, Z, Liu, J, Lei, L, Li, M, Zhang, Q, Wu, C, Zhang, Q, Wu, Y, Walsh, TR and Shen, J (2017 b) Comprehensive resistome analysis reveals the prevalence of NDM and MCR-1 in Chinese poultry production. Nature Microbiology 2, 16260.CrossRefGoogle ScholarPubMed
Wang, Y, Hu, Y, Cao, J, Bi, Y, Lv, N, Liu, F, Liang, S, Shi, Y, Jiao, X, Gao, GF and Zhu, B (2019) Antibiotic resistance gene reservoir in live poultry markets. The Journal of Infection 78, 445453.CrossRefGoogle ScholarPubMed
Ward, JS and Barker, A (2013). Undefined by data: a survey of big data definitions. ArXiv:1309.5821 [Cs]. Available at http://arxiv.org/abs/1309.5821.Google Scholar
Westreich, ST, Treiber, ML, Mills, DA, Korf, I and Lemay, DG (2018) SAMSA2: a standalone metatranscriptome analysis pipeline. BMC Bioinformatics 19, 175.CrossRefGoogle ScholarPubMed
WHO (2015) WHO | WHO estimates of the global burden of foodborne diseases. Available at http://www.who.int/foodsafety/publications/foodborne_disease/fergreport/en/ (Accessed 11 July 2018).Google Scholar
Winfield, MD and Groisman, EA (2003) Role of nonhost environments in the lifestyles of Salmonella and Escherichia coli. Applied and Environmental Microbiology 69, 36873694.CrossRefGoogle ScholarPubMed
Wise, MG, Estabrook, MA, Sahm, DF, Stone, GG and Kazmierczak, KM (2018) Prevalence of mcr-type genes among colistin-resistant Enterobacteriaceae collected in 2014–2016 as part of the INFORM global surveillance program. PLoS One 13, 18.CrossRefGoogle ScholarPubMed
Wolfien, M, Rimmbach, C, Schmitz, U, Jung, JJ, Krebs, S, Steinhoff, G, David, R and Wolkenhauer, O (2016) TRAPLINE: a standardized and automated pipeline for RNA sequencing data analysis, evaluation and annotation. BMC Bioinformatics 17, 21.CrossRefGoogle ScholarPubMed
Wu, G, Day, MJ, Mafura, MT, Nunez-Garcia, J, Fenner, JJ, Sharma, M, van Essen-Zandbergen, A, Rodríguez, I, Dierikx, C, Kadlec, K, Schink, AK, Chattaway, M, Wain, J, Helmuth, R, Guerra, B, Schwarz, S, Threlfall, J, Woodward, MJ, Woodford, N, Coldham, N and Mevius, D (2013) Comparative analysis of ESBL-positive Escherichia coli isolates from animals and humans from the UK, The Netherlands and Germany. PLoS One 8, e75392.CrossRefGoogle ScholarPubMed
Wu, G, Qi, Y, Liu, X, Yang, N, Xu, G, Liu, L and Li, X (2017) Cecal microRNAome response to Salmonella enterica serovar Enteritidis infection in white leghorn layer. BMC Genomics 18, 113.CrossRefGoogle ScholarPubMed
Wu, C, Wang, Y, Shi, X, Wang, S, Ren, H, Shen, Z, Wang, Y, Lin, J and Wang, S (2018) Rapid rise of the ESBL and mcr-1 genes in Escherichia coli of chicken origin in China, 2008–2014. Emerging Microbes & Infections 7, 30.CrossRefGoogle Scholar
Xavier, BB, Lammens, C, Ruhal, R, Kumar-Singh, S, Butaye, P, Goossens, H and Malhotra-Kumar, S (2016) Identification of a novel plasmid-mediated colistin-resistance gene, mcr-2, in Escherichia coli, Belgium, June 2016. Euro Surveillance: Bulletin Europeen Sur Les Maladies Transmissibles = European Communicable Disease Bulletin 21, 16.Google Scholar
Xing, X, Zhang, B, Li, D and Wang, T (2018) Comprehensive whole DNA methylome analysis by integrating MeDIP-seq and MRE-seq. Methods in Molecular Biology (Clifton, N.J.) 1708, 209246.CrossRefGoogle ScholarPubMed
Xiong, W, Wang, Y, Sun, Y, Ma, L, Zeng, Q, Jiang, X, Li, A, Zeng, Z and Zhang, T (2018) Antibiotic-mediated changes in the fecal microbiome of broiler chickens define the incidence of antibiotic resistance genes. Microbiome 6, 34.CrossRefGoogle ScholarPubMed
Xu, H, Zhu, X, Hu, Y, Li, Z, Zhang, X, Nie, Q, Nolan, LK and Lamont, SJ (2014) DNA methylome in spleen of avian pathogenic Escherichia coli-challenged broilers and integration with mRNA expression. Scientific Reports 4, 4299.CrossRefGoogle ScholarPubMed
Zhang, L, Li, P, Liu, R, Zheng, M, Sun, Y, Wu, D, Hu, Y, Wen, J and Zhao, G (2015) The identification of loci for immune traits in chickens using a genome-wide association study. PLoS One 10, e0117269.CrossRefGoogle ScholarPubMed
Zhao, X, Lin, C-W, Wang, J and Oh, DH (2014) Advances in rapid detection methods for foodborne pathogens. Journal of Microbiology and Biotechnology 24, 297312.CrossRefGoogle ScholarPubMed
Zhu, Q, Fisher, SA, Dueck, H, Middleton, S, Khaladkar, M and Kim, J (2018) PIVOT: platform for interactive analysis and visualization of transcriptomics data. BMC Bioinformatics 19, 6.CrossRefGoogle ScholarPubMed
Ziprin, RL, Young, CR, Stanker, LH, Hume, ME and Konkel, ME (1999) The absence of cecal colonization of chicks by a mutant of Campylobacter jejuni not expressing bacterial fibronectin-binding protein. Avian Diseases 43, 586589.CrossRefGoogle Scholar