Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2025-01-04T09:25:45.524Z Has data issue: false hasContentIssue false

The role of dietary selenium in bovine mammary gland health and immune function

Published online by Cambridge University Press:  06 February 2009

S. Salman*
Affiliation:
Institut für Tierernährung, Freie Universität Berlin, Brümmerstr 34, 14195Berlin, Germany
A. Khol-Parisini
Affiliation:
Institut für Tierernährung, Freie Universität Berlin, Brümmerstr 34, 14195Berlin, Germany
H. Schafft
Affiliation:
Bundesinstitut für Risikobewertung (BfR), Diedersdorfer Weg 1, 12277Berlin, Germany
M. Lahrssen-Wiederholt
Affiliation:
Bundesinstitut für Risikobewertung (BfR), Diedersdorfer Weg 1, 12277Berlin, Germany
H. W. Hulan
Affiliation:
Department of Biochemistry, Memorial University, St. John's, Newfoundland, A1B 3X9, Canada
D. Dinse
Affiliation:
Institut für Tierernährung, Freie Universität Berlin, Brümmerstr 34, 14195Berlin, Germany
J. Zentek
Affiliation:
Institut für Tierernährung, Freie Universität Berlin, Brümmerstr 34, 14195Berlin, Germany
*
*Corresponding author. E-mail: [email protected]

Abstract

Mastitis is not only a major cause of economic losses to the dairy industry but also a major problem in ensuring the quality and safety of the milk, associated with high somatic cell counts and residues of antibiotics used for treatment. One innovative approach to protection against mastitis is to stimulate the animal's natural defense mechanisms. Technological advances in immunological research have increased our ability to exploit the immunity of the bovine mammary gland during periods of high susceptibility to disease. The trace element selenium affects the innate and the adaptive immune responses of the mammary gland through cellular and humoral activities. Substantial research has been carried out on the effect of selenium (Se) on the immune function of the mammary gland and subsequent improvement in bovine udder health and mastitis control. Levels higher than current recommendations and Se-yeast can potentially be used to enhance our capacity to modulate the physiological mechanisms of the bovine mammary gland to respond to infection. This article provides an overview of the most recent research in this field.

Type
Review Article
Copyright
Copyright © Cambridge University Press 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ali-Vehmas, T, Vikerpuur, M, Fang, W and Sandholm, M (1997). Giving selenium supplements to dairy cows strengthens the inflammatory response to intramammary infection and induces a growth-suppressing effect on mastitis pathogens in whey. Zentralbl Veterinarmed A 44: 559571.CrossRefGoogle ScholarPubMed
Alluwaimi, AM (2004). The cytokines of bovine mammary gland: prospects for diagnosis and therapy. Research in Veterinary Science 77: 211222.CrossRefGoogle ScholarPubMed
Arthur, JR, McKenzie, RC and Beckett, GJ (2003). Selenium in the immune system. Journal of Nutrition 133: 14571459.CrossRefGoogle ScholarPubMed
Awadeh, FT, Abdelrehman, MM, Kincaid, RL and Fineley, JW (1998). Effect of selenium supplements on the distribution of selenium among serum proteins in cattle. Journal of Dairy Science 81: 10891094.CrossRefGoogle ScholarPubMed
Burvenich, C, Paape, MJ, Hill, AW, Guidry, AJ, Miller, RH, Heyneman, R, Kremer, WDJ and Brand, A (1994). Role of the neutrophil leukocyte in the local and systemic reactions during experimentally induced E. coli mastitis in cows immediately after calving. Veterinary Quarterly 16: 4550.CrossRefGoogle ScholarPubMed
Burvenich, C, Van Merris, V, Mehrzad, J, Diez-Fraile, A and Duchateau, L (2003). Severity of E. coli mastitis is mainly determined by cow factors. Veterinary Research 34: 521564.CrossRefGoogle ScholarPubMed
Bannerman, DD, Paape, MJ, Goff, JP, Kimura, K, Lippolis, JD and Hope, JC (2004). Innate immune response to intramammary infection with Serratia marcescens and Streptococcus uberis. Veterinary Research 35: 681700.CrossRefGoogle ScholarPubMed
Boyne, R and Arthur, JR (1979). Alterations of neutrophil function in selenium-deficient cattle. Journal of Comparative Pathology 89: 151158.CrossRefGoogle ScholarPubMed
Burton, JL and Erskine, RJ (2003). Immunity and mastitis: some new ideas for an old disease. Veterinary Clinics of North America: Food Animal Practice 19: 145.Google ScholarPubMed
Cao, YZ, Maddox, JF, Mastro, AM, Scholz, RW, Hildenbrandt, G and Reddy, CC (1992). Selenium deficiency alters the lipoxygenase pathway and mitogenic response in bovine lymphocytes. Journal of Nutrition 122: 21212127.CrossRefGoogle ScholarPubMed
Cao, YZ, Weaver, JA, Reddy, CC and Sordillo, LM (2002). Selenium deficiency alters the formation of eicosanoids and signal transduction in rat lymphocytes. Prostaglandins and Other Lipid Mediators 70: 131143.CrossRefGoogle ScholarPubMed
Capuco, AV, Mein, GA, Nickerson, SC, Jack, LJ, Wood, DL, Bright, SA, Aschenbrenner, RA, Miller, RH and Bitman, J (1994). Influence of pulsationless milking on teat canal keratin and mastitis. Journal of Dairy Science 77: 6474.CrossRefGoogle ScholarPubMed
Cebra, CK, Heidel, JR, Crisman, RO and Stang, BV (2003). The relationship between endogenous cortisol, blood micronutrients, and neutrophil function in postparturient Holstein cows Journal of Veterinary Internal Medicine 17: 902907.CrossRefGoogle ScholarPubMed
Craven, N (1985). Do rising fat-globules assist microbial invasion via the teat duct between milking? Kieler Milch Forschung 37: 554558.Google Scholar
deToledo, LRA and Perry, TW (1985). Distribution of supplemental selenium in the serum, hair, colostrum, and fetus of parturient dairy cows. Journal of Dairy Science 68: 32493254.CrossRefGoogle Scholar
Erskine, RJ, Eberhart, RJ, Grasso, PJ and Scholz, RW (1989). Induction of Escherichia coli mastitis in cows fed selenium-deficient or selenium-supplemented diets. American Journal of Veterinary Research 50: 20932100.Google ScholarPubMed
Finlay, BB and Hancock, RE (2004). Can innate immunity be enhanced to treat microbial infections? Nature Reviews Microbiology 2: 497504.CrossRefGoogle ScholarPubMed
Gerloff, BJ (1992). Effect of selenium supplementation on dairy cattle. Journal of Animal Science 70: 39343940.CrossRefGoogle ScholarPubMed
Gershwin, LJ, Krakowka, S and Olsen, RG (1995). Immunoglobulins: Immunology and Immunopathology of Domestic Animals. St. Louis, MO: Mosby Press.Google Scholar
German Society for Nutritional Physiology (GfE) (2001). Ausschuss für Bedarfsnormen Der Gesellschaft für Ernahrungsphysiologie: In Empfehlungen zur Energie und Nahrstoffversorgung der Milchkühe und Aufzuchtrinder. Frankfurt am Main, Germany: DLG Verlag, pp. 9798.Google Scholar
Goldammer, T, Zerbe, H, Molenaar, A, Schuberth, HJ, Brunner, RM, Kata, SR and Seyfert, HM (2004). Mastitis increases mammary mRNA abundance of beta-defensin 5, Toll-like-receptor 2 (TLR2), and TLR4 but not TLR9 in cattle. Clinical Diagnostic Laboratory Immunology 11: 174185.Google Scholar
Grace, ND, Knowles, SO and Lee, J (1997). Relationships between blood selenium concentrations and milk somatic cell counts in dairy cows. New Zealand Journal of Veterinary Science 45: 171172.CrossRefGoogle Scholar
Grasso, PJ, Scholz, RW, Erskine, RJ and Eberhart, RJ (1990). Phagocytosis, bactericidal activity, and oxidative metabolism of milk neutrophils from dairy cows fed selenium supplemented and selenium-deficient diets. American Journal of Veterinary Research 51: 269274.CrossRefGoogle ScholarPubMed
Gunter, SA, Beck, PA and Phillips, JM (2003). Effects of supplementary selenium source on the performance and blood measurements in beef cows and their calves. Journal of Animal Science 81: 856864.Google ScholarPubMed
Guyot, H, Spring, P, Andrieu, S and Rollin, F (2007). Comparative responses to sodium selenite and organic selenium supplements in Belgian Blue cows and calves. Livestock Science 111: 259263.CrossRefGoogle Scholar
Gyang, EO, Stevens, JB, Olson, WG, Tsitsamis, SD and Usenik, EA (1984). Effects of selenium-vitamin E injection on bovine polymorphonucleated leukocytes phagocytosis and killing of Staphylococcus aureus. American Journal of Veterinary Research 45: 175177.Google ScholarPubMed
Hemingway, RG (1999). The influences of dietary selenium and vitamin E intakes on milk somatic cell counts and mastitis in cows. Veterinary Research Communications 23: 481499.CrossRefGoogle ScholarPubMed
Hibbitt, KG, Cole, CB and Reiter, B (1969). Antimicrobial proteins isolated from the teat canal of the cow. Journal of General Microbiology 56: 365.CrossRefGoogle ScholarPubMed
Hill, AW, Heneghan, DJ and Williams, MR (1983). The opsonic activity of bovine milk whey for the phagocytosis and killing by neutrophils of encapsulated and non-encapsulated Escherichia coli. Veterinary Microbiology 8: 293300.CrossRefGoogle ScholarPubMed
Hogan, JS, Smith, KL, Weiss, WP, Todhunter, DA and Schockey, WL (1990). Relationships among vitamin E, selenium, and bovine blood neutrophils. Journal of Dairy Science 73: 23722378.CrossRefGoogle ScholarPubMed
Jensen, DL and Eberhart, RJ (1981). Total and differential cell counts in secretions of the nonlactating bovine mammary gland. American Journal of Veterinary Research 42: 743747.Google ScholarPubMed
Jukola, E, Hakkarainen, J, Saloniemi, H and Sankari, S (1996). Blood selenium, vitamin E, vitamin A, and beta-carotene concentrations and udder health, fertility treatments, and fertility. Journal of Dairy Science 79: 838845.CrossRefGoogle ScholarPubMed
Juniper, DT, Phipps, RH, Jones, AK and Bertin, G (2006). Selenium supplementation of lactating dairy cows: Effect on selenium concentration in blood, milk, urine, and feces. Journal of Dairy Science 89: 35443551.CrossRefGoogle ScholarPubMed
Knowles, SO, Grace, ND, Wurms, K and Lee, J (1999). Significance of amount and form of dietary selenium on blood, milk, and casein selenium concentrations in grazing cows. Journal of Dairy Science 82: 429437.CrossRefGoogle ScholarPubMed
Köhrle, J, Brigelius-Flohe, R, August Böck, A, Gärtner, R, Meyer, O and Flohe, L (2000). Selenium in biology: facts and medical perspectives. Biological Chemistry 381: 849864.CrossRefGoogle Scholar
Kommisrud, E, Osteras, O and Vatn, T (2005). Blood selenium associated with health and fertility in Norwegian dairy herds. Acta Veterinaria Scandanavica 46: 229240.CrossRefGoogle ScholarPubMed
Lacetera, N, Bernabucci, U, Ronchi, B and Nardone, A (1996). Effects of selenium and vitamin E administration during a late stage of pregnancy on colostrum and milk production in dairy cows, and on passive immunity and growth of their offspring. American Journal of Veterinary Research 57: 17761780.CrossRefGoogle ScholarPubMed
Larsen, HJ (1993). Relations between selenium and immunity. Norwegian Journal of Agricultural Science: 105119.Google Scholar
Leijh, PC, van den Barselaar, MT, van Zwet, TL, Dubbeldeman-Rempt, I and van Furth, R (1979). Kinetics of phagocytosis of Staphylococcus aureus and Escherichia coli by human granulocytes. Immunology 37: 453465.Google ScholarPubMed
Leitner, G, Eligulashvily, R, Krifucks, O, Perl, S and Saran, A (2003). Immune cell differentiation in mammary gland tissues and milk of cows chronically infected with Staphylococcus aureus. Journal Veterinary Medicine B: Infectious Diseases and Veterinary Public Health 50: 4552.CrossRefGoogle ScholarPubMed
Leyan, V, Wittwer, F, Contreras, PA and Kruze, J (2004). Serum and colostrum immunoglobulin concentrations from selenium deficient cows and in the blood of their calves. Archivos De Medicina Veterinaria 36: 155162.Google Scholar
Maddox, JF, Reddy, CC, Eberhart, RJ and Scholz, RW (1991). Dietary selenium effects on milk eicosanoid concentration in dairy cows during coliform mastitis. Prostaglandins 42: 369378.CrossRefGoogle ScholarPubMed
Ministry of Agriculture, Fisheries and Food (MAFF), Department of Agriculture for Scotland, Department of Agriculture for Northern Ireland, United Kingdom Agricultural Supply Trade Association and British Veterinary Association Working Party Report (1984). Mineral Trace Element and Vitamin Allowances for Ruminant Livestock. In: Haresign, W and Cole, DJA (eds) Recent Advances in Animal Nutrition, London: Butterworths. pp. 113131.Google Scholar
Maiorino, M, Roveri, A, Benazzi, L, Bosello, V, Mauri, P, Toppo, S, Tosatto, SC and Ursini, F (2005). Functional interaction of phospholipid hydroperoxide glutathione peroxidase with sperm mitochondrion-associated cysteine-rich protein discloses the adjacent cysteine motif as a new substrate of the selenoperoxidase. Journal of Biological Chemistry 280: 3839538402.CrossRefGoogle ScholarPubMed
Malbe, M, Attila, M and Atroshi, F (2006). Possible involvement of selenium in Staphylococcus aureus inhibition in cow's whey. Journal of Animal Physiology Animal Nutrition 90: 159164.CrossRefGoogle ScholarPubMed
Malbe, M, Klaassen, M, Fang, W, Myllys, V, Vikerpuur, M, Nyholm, K, Sankari, S, Suoranta, K and Sandholm, M (1995). Comparisons of selenite and selenium yeast feed supplements on Se-incorporation, mastitis and leucocyte function in Se-deficient dairy cows. Zentralbl Veterinarmed A 42: 111121.CrossRefGoogle ScholarPubMed
Malbe, M, Klaassen, E, Kaartinen, L, Attila, M and Atroshi, F (2003). Effects of oral selenium supplementation on mastitis markers and pathogens in Estonian cows. Veterinary Therapeutics 4: 145154.Google ScholarPubMed
Maus, RW, Martz, FA, Belyea, RL and Weiss, MF (1980). Relationship of dietary selenium to selenium in plasma and milk from dairy cows. Journal of Dairy Science 63: 532537.CrossRefGoogle ScholarPubMed
McDonald, JS and Anderson, AJ (1981). Total and differential somatic cell counts in secretions from noninfected bovine mammary glands: the early nonlactating period. American Journal of Veterinary Research 42: 13601365.Google ScholarPubMed
McKenzie, RC, Arthur, JR and Beckett, GJ (2002). Selenium and the regulation of cell signaling, growth, and survival: molecular and mechanistic aspects. Antioxidants and Redox Signaling 4: 339351.CrossRefGoogle ScholarPubMed
Mehrzad, J, Duchateau, L, Pyorala, S and Burvenich, C (2002). Blood and milk neutrophil chemiluminescence and viability in primiparous and pluriparous dairy cows during late pregnancy, around parturition and early lactation. Journal of Dairy Science 85: 32683276.CrossRefGoogle ScholarPubMed
Miller, RH, Bitman, J, Bright, SA, Wood, DL and Capuco, AV (1992). Effect of clinical and subclinical mastitis on lipid composition of teat canal keratin. Journal of Dairy Science 75: 14361442.CrossRefGoogle ScholarPubMed
Mukherjee, R (2008). Selenium and vitamin E increases polymorphonuclear cell phagocytosis and antioxidant levels during acute mastitis in riverine buffaloes. Veterinary Research Communications 32: 305313.CrossRefGoogle ScholarPubMed
Murphy, JM and Stuart, OM (1953). The effect of introducing small numbers of Streptococcus agalactiae (Cornell Strain'48) directly into the bovine teat cavity. Cornell Veterinary 43: 290.Google Scholar
Mullan, NA, Carter, EA and Nguyen, KA (1985). Phagocytic and bactericidal properties of bovine macrophages from non-lactating mammary glands. Research in Veterinary Science 38: 160166.CrossRefGoogle ScholarPubMed
Muniz-Naveiro, O, Dominguez-Gonzalez, R, Bermejo-Barrera, A, De Juan, JAC, Bermudez, JMF, Pereiras, AG, Santamaria, AL, Lede, IM, Puente, JV, Gomez, LFC and Bermejo-Barrera, P (2005). Selenium content and distribution in cow's milk supplemented with two dietary selenium sources. Journal of Agricultural and Food Chemistry 53: 98179822.CrossRefGoogle ScholarPubMed
Myllys, V, Honkanen-Buzalski, T, Virtanen, H, Pyorala, S and Muller, HP (1994). Effect of abrasion of teat orifice epithelium on development of bovine staphylococcal mastitis. Journal of Dairy Science 77: 446452.CrossRefGoogle ScholarPubMed
National Mastitis Council (2005). NE-1009, USDA multistate research project, questions and comments: [email protected].Google Scholar
National Research Council (2001). Nutrient Requirements of Dairy Cattle, 7th Rev. edn. Washington, DC: National Academy of Sciences.Google Scholar
Ndiweni, N and Finch, JM (1995). Effects of in vitro supplementation of bovine mammary gland macrophages and peripheral blood lymphocytes with a-tocopherol and sodium selenite: implications for udder defences. Veterinary Immunoclogy and lmmunopathology 47: 111121.CrossRefGoogle Scholar
Ndiweni, N and Finch, JM (1996). Effects of in vitro supplementation with α-tocopherol and selenium on bovine neutrophil functions: implications for resistance to mastitis. Veterinary Immunology and lmmunopathology 51: 6778.CrossRefGoogle ScholarPubMed
Ortman, K and Pehrson, B (1997). Selenite and selenium yeast as feed supplements for dairy cows. Journal Veterinary Medicine 44: 373380.CrossRefGoogle ScholarPubMed
Ortman, K and Pehrson, B (1999). Effect of selenate as feed supplement to dairy cows in comparison to selenite and selenium yeast. Journal of Animal Science 77: 33653370.CrossRefGoogle ScholarPubMed
Oviedo-Boyso, J, Valdez-Alarcon, JJ, Cajero-Juarez, M, Ochoa-Zarzosa, A, Lopez-Meza, JE, Braro-Patino, A and Baizabal Aguirre, V (2007). Innate immune response of bovine mammary gland to pathogenic bacteria responsible for mastitis. Journal of Infection 54: 399409.CrossRefGoogle ScholarPubMed
Paape, MJ, Bannerman, DD, Zhao, X and Lee, JW (2003). The bovine neutrophil: structure and function in blood and milk. Veterinary Research 34: 597627.Google ScholarPubMed
Palacios, O, Encinar, JR, Bertin, G and Lobinski, R (2005). Analysis of the selenium species distribution in cow blood by size exclusion liquid chromatography-inductively coupled plasma collision cell mass spectrometry (SEC-ICPccMS). Analytical and Bioanalytical Chemistry 383: 516522.CrossRefGoogle ScholarPubMed
Panousis, N, Roubies, N, Karatzias, H, Frydas, S and Papasteriadis, A (2001). Effect of selenium and vitamin E on antibody production by dairy cows vaccinated against Escherichia coli. Veterinary Record 149: 643646.CrossRefGoogle ScholarPubMed
Park, YH, Joo, YS, Park, JY, Moon, JS, Kim, SH and Kwon, NH (2004). Characterization of lymphocytes subpopulations and major histocompatibility complex haplotypes of mastitis-resistant and susceptible cows. Journal of Veterinary Science 5: 2939.CrossRefGoogle ScholarPubMed
Parnham, MJ, Bittner, C and Winkelmann, J (1983). Chemiluminescence from mouse resident macrophages: characterization and modulation by arachidonate metabolites. Immunopharmacology 5: 277291.CrossRefGoogle ScholarPubMed
Paulrud, CO (2005). Basic concepts of the bovine teat canal. Veterinary Research Communications 29: 215245.CrossRefGoogle ScholarPubMed
Pavlata, L, Prasek, J, Filipek, J and Pechova, A (2004). Influence of parenteral administration of selenium and vitamin E during pregnancy on selected metabolic parameters and colostrum quality in dairy cows at parturition. Veterinarni Medicina 49: 149155.CrossRefGoogle Scholar
Pehrson, B, Orman, K, Madjid, N and Trafikowska, U (1999). The influence of dietary selenium as selenium yeast or sodium selenite on the concentrations of selenium in the milk of suckler cows and on the selenium status of their calves. Journal of Animal Science 77: 33713376.CrossRefGoogle ScholarPubMed
Persson, KW, Colditz, IG, Lun, S and Östensson, K (2003). Cytokines in mammary lymph and milk during endotoxin-induced bovine mastitis. Research in Veterinary Science 74: 3136.CrossRefGoogle Scholar
Politis, I, Zhao, X, McBride, BW and Burton, JH (1992). Function of bovine mammary macrophages as antigen-presenting cells. Veterinary Immunology Immunopathology 30: 399410.CrossRefGoogle ScholarPubMed
Rainard, P (2003). The complement in milk and defense of the bovine mammary gland against infections. Veterinary Research 34: 647670.CrossRefGoogle ScholarPubMed
Rainard, P and Poutrel, B (2000). Generation of complement fragment C5a in milk is variable among cows. Journal of Dairy Science 83: 945951.CrossRefGoogle ScholarPubMed
Rainard, P and Riollet, C (2006). Innate immunity of the bovine mammary gland. Veterinary Research 37: 369400.CrossRefGoogle ScholarPubMed
Riollet, C, Rainard, P and Poutrel, B (2000). Differential induction of complement fragment C5a and inflammatory cytokines during intramammary infections with Escherichia coli and Staphylococcus aureus. Clinical and Diagnostic Laboratory Immunology 7: 161167.CrossRefGoogle ScholarPubMed
Roy, M, Kiremidjian-Schumacher, L, Wishe, HI, Cohen, MW and Stotzky, G (1994). Supplementation with selenium and human immune cell functions. I. Effect on lymphocyte proliferation and interleukin 2 receptor expression. Biological Trace Element Research 41: 103114.CrossRefGoogle ScholarPubMed
Saini, SS, Allore, B, Jacobs, RM and Kaushik, A (1999). Exceptionally long CDR3H region with multiple cysteine residues in functional bovine IgM antibodies. European Journal of Immunology 29: 24202426.3.0.CO;2-A>CrossRefGoogle ScholarPubMed
Schalm, OW, Carroll, EJ and Jain, NC (1971). Number and types of somatic cells in normal and mastitic milk. In: Bovine Mastitis. Philadelphia: Lea and Febiger, pp. 94127.Google Scholar
Smith, KL, Harrison, JH, Hancock, DD, Todhunter, DA and Conrad, HR (1984). Effect of vitamin E and selenium supplementation on incidence of clinical mastitis and duration of clinical symptoms. Journal of Dairy Science 67: 12931300.CrossRefGoogle ScholarPubMed
Sordillo, LM and Nickerson, SC (1988). Morphometric changes in the bovine mammary gland during involution and lactogenesis. American Journal of Veterinary Research 49: 1112.Google Scholar
Sordillo, LM and Streicher, KL (2002). Mammary gland immunity and mastitis susceptibility. Journal of Mammary Gland Biology and Neoplasia 7: 135146.CrossRefGoogle ScholarPubMed
Sordillo, LM, Campos, M and Babiuk, LA (1991). Antibacterial activity of bovine mammary gland lymphocytes following treatment with interleukin-2. Journal of Dairy Science 74: 33703375.CrossRefGoogle ScholarPubMed
Sordillo, LM, Shafer-Weaver, K and DeRosa, D (1997). Immunobiology of the mammary gland. Journal of Dairy Science 80: 18511865.CrossRefGoogle ScholarPubMed
Sordillo, LM, Kendall, JT, Corl, CM and Cross, TH (2005). Molecular characterization of a saposin-like protein family member isolated from bovine lymphocytes. Journal of Dairy Science 88: 13781390.CrossRefGoogle ScholarPubMed
Stabel, JR, Reinhardt, TA and Nonnecke, BJ (1991). Effect of selenium and reducing agents on in vitro immunoglobulin M synthesis by bovine lymphocytes. Journal of Dairy Science 74: 25012506.CrossRefGoogle ScholarPubMed
Stagsted, J (2006). Absence of both glutathione peroxidase activity and glutathione in bovine milk. International Dairy Journal 16: 662668.CrossRefGoogle Scholar
Stowe, HD and Herdt, TH (1992). Clinical assessment of selenium status of livestock. Journal of Animal Science 70: 39283933.CrossRefGoogle ScholarPubMed
Strichman, R and Samuel, CE (2001). The role of gamma interferon in antimicrobial immunity. Current Opinion in Microbiology 4: 251259.CrossRefGoogle Scholar
Surai, PF (ed) (2006). Selenium and immunity, In: Selenium in Nutrition and Health, Nottingham, UK: Nottingham University Press, pp. 232233.Google Scholar
Swecker, WS Jr, Eversole, DE, Thatcher, CD, Blodgett, DJ, Schurig, GG and Meldrum, JB (1989). Influence of supplemental selenium on humoral immune responses in weaned beef calves. American Journal of Veterinary Research 50: 17601763.Google ScholarPubMed
Waller, KP (2000). Mammary gland immunology around parturition. Influence of stress, nutrition and genetics. Advanced Experimental Medical Biology 480: 231245.CrossRefGoogle ScholarPubMed
Weiss, WP (2005). Selenium sources for dairy cattle. Paper presented at: Tri-State Dairy Nutrition Conference, 2–3 May, USA.Google Scholar
Weiss, WP and Hogan, JS (2005). Effect of selenium source on selenium status, neutrophil function, and response to intramammary endotoxin challenge of dairy cows. Journal of Dairy Science 88: 43664374.CrossRefGoogle ScholarPubMed
Weiss, WP, Todhunter, DA, Hogan, JS and Smith, KL (1990). Effect of duration of supplementation of selenium and vitamin E on periparturient dairy cows. Journal of Dairy Science 73: 31873194.CrossRefGoogle ScholarPubMed
Wichtel, JJ, Craigie, AL, Varela-Alvarez, H and Williamson, NB (1994). The effect of intra-ruminal selenium pellets on growth rate, lactation and reproductive efficiency in cattle. New Zealand Veterinary Journal 42: 205210.CrossRefGoogle Scholar
Wichtel, JJ, Keefe, GP, Van Leeuwen, JA, Spangler, E, McNiven, MA and Ogilvie, TH (2004). The selenium status of dairy herds in Prince Edward Island. Canadian Veterinary Journal 45: 124132.Google ScholarPubMed
Williams, MR and Hill, AW (1982). A role for IgM in the in vitro opsonisation of Staphylococcus aureus and Escherichia coli by bovine polymorphonuclear leucocytes. Research in Veterinary Science 33: 4753.CrossRefGoogle ScholarPubMed
Wood, SM, Beckham, C, Yosioka, A, Darban, H and Watson, RR (2000). Βeta carotene and selenium supplementation enhance immune response in aged humans. Integrative Medecine 2: 8590.CrossRefGoogle Scholar
Yaeger, MJ, Neiger, RD, Holler, L, Fraser, TL, Hurley, DJ and Palmer, IS (1998). The effect of subclinical selenium toxicosis on pregnant beef cattle. Journal of Veterinary Diagnostic Investigations 10: 268273.CrossRefGoogle ScholarPubMed
Yamaguchi, T, Hiratsuka, M, Asai, K, Kai, K and Kumagai, K (1999). Differential distribution of T lymphocytes subpopulations in the bovine mammary gland during lactating period. Journal of Dairy Science 82: 14591464.CrossRefGoogle Scholar
Yamanaka, H, Hisaeda, K, Hagiwara, K, Kirisawa, R and Iwai, H (2000). ELISA for bovine interleukin-1 receptor antagonist and its application to mastitic sera and whey. Journal Veterinary Medical Science 62: 661664.CrossRefGoogle ScholarPubMed