Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-18T19:14:55.619Z Has data issue: false hasContentIssue false

Multivariate characterization of morphological traits in local Tunisian oases goats

Published online by Cambridge University Press:  08 December 2014

M. Nafti*
Affiliation:
Department of Animal Production and Fishery Sciences, Institut National Agronomique de Tunisie, Tunis, Tunisia
Z. Khaldi
Affiliation:
Department of Animal Production, Centre Régional de Recherche en Agriculture Oasienne, Tozeur, Tunisia
B. Haddad
Affiliation:
Department of Animal Production and Fishery Sciences, Institut National Agronomique de Tunisie, Tunis, Tunisia
*
Correspondence to: M. Nafti, Department of Animal Production and Fishery Sciences, Institut National Agronomique de Tunisie, Tunis, Tunisia. email: [email protected]
Get access

Summary

This paper describes some of the morphological characteristics of the Tunisian native goat. Data were collected on 1 247 goats from 202 holdings in two oases areas (Jerid and Nefzawa). These included body length, heart girth, height at withers, ear length, horn and hairs length, as well as qualitative characters such as colour, and the presence or absence of horns, wattles and beard, ears type and curling, horns form, hair type and the facial profile. Quantitative variables were then submitted to a principal component analysis (PCA) to reduce data dimensionality and enable discrimination of groups by individuals and populations. The multiple correspondence analysis was used with qualitative variables to allow further distinction within subpopulations. A discriminant canonical analysis was also conducted discrimination between subpopulations. Wither height, heart girth and ear length were the most determinant traits in differentiating between subpopulations with the PCA. The parameters that best segregate the subpopulations in the multiple correspondences analysis are the hair length and the subpopulation. Therefore, multivariate analyses were useful in the morphological characterization of the native goat from Tunisian oases. Canonical analyses showed that hair length, ear length and wither height are the best linear measurements for discrimination between goat subpopulations. The largest Mahalanobis distance was between Arbi Jerid and Serti Nefzawa goats, whereas the closest distance was between Serti Jerid and Serti Nefzawa subpopulations.

Résumé

Notre étude portait sur la caractérisation phénotypique des caprins locaux (quatre sous-populations; Arbi Jerid, Arbi Nefzawa, serti Jerid et Serti Nefzawa) dans les régions oasiennes de la Tunisie. Un échantillon de 1 247 animaux ont été analysés pour 14 caractères morphologiques; six caractères quantitatifs (hauteur au garrot, périmètre thoracique, longueur du corps, longueur des poils, longueur des cornes et longueur des oreilles) et huit caractères qualitatifs (le type et la couleur du pelage, la présence de la barbe et la présence des pampilles, la forme et la taille des cornes, la forme des oreilles, type de chanfrein). Aussi des méthodes d'analyse de données multivariées (analyse en composantes principales analyse factorielle de correspondances multiples et analyse discriminante canonique) ont été utilisées pour analyser les variables étudiées à fin de pouvoir distinguer entre les groupes génétiques ainsi qu'entre les zones d'élevage. Les chèvres Arbi Jerid possédaient les valeurs de longueur du corps les plus grandes tandis que les chèvres Arbi Nefzawa avaient les valeurs les plus importantes pour toutes les autres mesures. D'après les analyses multivariées, ces sous-populations ont été divisées en deux grands groupes génétiques. La hauteur au garrot, le périmètre thoracique et de la longueur des oreilles étaient les caractéristiques les plus déterminantes pour différencier entre les sous-populations avec l'analyse en composantes principales. Les paramètres qui correspondaient le mieux pour différencier les sous-populations de l'analyse des correspondances multiples sont la longueur des poils et les sous groupes génétiques. L'analyse canonique a montré que la longueur des poils, la longueur des oreilles et la hauteur au garrot sont les meilleures mesures linéaires permettant la discrimination entre les quatre sous-populations étudiées. La plus grande distance de Mahalanobis était entre les chèvres Arbi Jerid et Serti Nefzawa, tandis que la distance la plus proche se situait entre Serti Jerid et Serti Nefzawa.

Resumen

Este artículo describe algunos de los rasgos morfológicos de la cabra autóctona tunecina. Los datos fueron tomados sobre un total de 1 247 cabras de 202 propietarios en dos zonas de oasis (Jerid y Nefzawa). En concreto, se midió la longitud corporal, la circunferencia torácica, la altura a la cruz y la longitud de las orejas, los cuernos y el pelo. También se registraron caracteres cualitativos como el color, la presencia o ausencia de cuernos, mamellas y barba, la forma y curvatura de las orejas, la forma de los cuernos, el tipo de pelo y el perfil facial. Las variables cuantitativas fueron después sometidas a un análisis de componentes principales para reducir la dimensionalidad de los datos y permitir la diferenciación de grupos por individuos y poblaciones. Se empleó el Análisis de Correspondencias Múltiples con las variables cualitativas para facilitar una mayor distinción dentro de las subpoblaciones. Se llevó también a cabo un análisis canónico discriminante para diferenciar las subpoblaciones. La altura a la cruz, la circunferencia torácica y la longitud de las orejas resultaron ser los rasgos más determinantes en la diferenciación de las subpoblaciones mediante el análisis de componentes principales. Los parámetros que mejor segregaron las subpoblaciones en el análisis de correspondencias múltiples fueron la longitud del pelo y la subpoblación. Así, los análisis multivariantes resultaron útiles en la caracterización morfológica de la cabra autóctona de los oasis tunecinos. Los análisis canónicos mostraron que la longitud del pelo y de las orejas y la altura a la cruz eran las mejores medidas lineales para la diferenciación entre subpoblaciones de cabras. La mayor distancia de Mahalanobis se dio entre las cabras Arbi Jerid y Serti Nefzawa, mientras que la menor distancia se obtuvo entre las subpoblaciones Serti Jerid y Serti Nefzawa.

Type
Research Article
Copyright
Copyright © Food and Agriculture Organization of the United Nations 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Acourene, S., Belguedj, M., Tam, M. & Taleb, B. 2001. Caractérisation, évaluation de la qualité de datte et identification des cultivars de palmier dattier de la région des Zibans. La Recherche Agronomique, INRA Algérie no 8: 1939.Google Scholar
Alade, N.K., Raji, A.O. & Atiku, M.A. 2008. Determination of appropriate model for the estimation of body weight in goats. J. Agric. Biol. Sci., 3: 5157.Google Scholar
Amao, O.A., Osinowo, O.A., Lakpini, C.A.M., Dipeolu, M.A., Abiola, S.S. & Onwuka, C.F.I. 2003. Types and frequency of udder shapes and abnormalities in West African Dwarf and Red Sokoto goats. Niger. J. Anim. Prod., 30: 253258.Google Scholar
Anderson, L. 2001. Genetic dissection of phenotypic diversity in farm animals. Nature Rev. Genet., 2: 130138.Google Scholar
Batubara, A., Noor, R.R., Farajallah, A., Tiesnamurtiand, B. & Doloksaribu, M. 2011. Morphometric and Phylogenic Analysis of Six Population Indonesian Local Goats. Media Peternakan, December 2011, pp. 165174.Google Scholar
Carneiro, H., Louvandini, H., Paiva, S. R., Macedo, F., Mernies, B. & McManus, C. 2010. Morphological characterization of sheep breeds in Brazil, Uruguay and Colombia. Small Ruminant Res., 94: 5865.Google Scholar
Chacón, E., Macedo, F., Velázquez, F., Rezende, P.S., Pineda, E. & Concepta-McManus, C. 2011. Morphological measurements and body indices for Cuban Creole goats and their crossbreds. R. Bras. Zootec., 40: 16711679.CrossRefGoogle Scholar
Cogovica . 1987. Parts for goat's allelic series: visible traits other than color. Paris, Tech. and Doc. Ed. Lavoisier, pp. 3738.Google Scholar
Dekhili, M., Bounechada, M. & Mannalah, I. 2013. Multivariate analyses of morphological traits in Algerian goats, Sétif, north-eastern Algeria. Anim. Genet. Res., 52: 5157.Google Scholar
Dossa, L.H., Wollny, C. & Gauly, M. 2007. Spatial variation in goat populations from Benin as revealed by multivariate analysis of morphological traits. J. Small Rum. Res., 73: 150159.CrossRefGoogle Scholar
FAO. 2007. Global Plan of Action for Animal Genetic Resources and the Interlaken Declaration. Rome. (available at ftp://ftp.fao.org/docrep/fao/010/a1404e/a1404e00.pdf)Google Scholar
FAO. 2012. Phenotypic characterization of animal genetic resources. FAO Animal Production and Health Guidelines No. 11. Rome. (available at http://www.fao.org/docrep/015/i2686e/i2686e00.pdf)Google Scholar
Herrera, M., Rodero, E., Gutierrez, M.J., Pena, F. & Rodero, J.M. 1996. Application of multifactorial discriminant analysis in the morphostructural differentiation of Andalusian caprine breeds. Small Rumin. Res., 22: 3947.Google Scholar
Ibe, S.N. 1989. Measures of size and conformation in commercial broilers. J. Anim. Breed. Genet., 106: 461469.Google Scholar
Jimmy, S., David, M., Donald, K.R. & Dennis, M. 2010. Variability in body measurement and their application in predicting live body weight of Mubende and Small East African goat breeds in Uganda. Middle-East J. Scient. Res., 5: 98105.Google Scholar
Jing, L., Ren-jun, Z., Guo-rong, Z., Qing-ran, Y. & Hua-ming, M. 2010. Quantitative and qualitative body traits of longling yellow goats in China. J. Agric. Sci. China, 9: 408415.Google Scholar
Karna, D.K., Koul, G.L. & Bisht, G.S. 2001. Pashmina yield and its association with morphometric traits in Indian Cheghu goats. J. Small Rum. Res., 41: 271275.Google Scholar
Khan, H., Muhammad, F., Ahmad, R., Nawaz, G., Rahimullah & Zubair, M. 2006. Relationship of body weight with linear body measurements in goats. J. Agric. Biol. Sci., 1: 5154.Google Scholar
La O-Arias, M., Guevara-Hernandez, F., Fonseca-Fuentes, N., Gomez-Castro, H., Pinto-Ruiz, R., Ley-De Coss, A., Medina-Jonapa, F.J., Coutino-Ruiz, R.R., Ruiz-Najera, R.E., Espinosa-Moreno, J.A. & Rodriguez-Larramendi, L.A. 2012. Morphological characterization of the Cuban Creole goat: basis for participatory management of a zoogenetic resource. Res. J. Biol. Sci., 7: 270277.Google Scholar
Lanari, M.R., Taddeo, H., Domingo, E., Centeno, M.M. & Gallo, L. 2003. Phenotypic differentiation of exterior traits in local criollo goat population in Patagonia (Argentina). Archive Tierzh. Dummerstorf, 46: 347356.Google Scholar
Lauvergne, J.J. 1986. Méthodologie pour l'étude des caprins Méditerranéens 1986. France, Les colloques de l'INRA, vol. 47, pp. 77–91.Google Scholar
Lauvergne, J.J., Renieri, C. & Audiot, A. 1987. Estimating erosion in phenotypic variation in a French traditional goat population. J. Hered., 78: 307314.Google Scholar
Mansjoer, S.S., Kertanugraha, T. & Sumantri, C. 2007. Estimasi jarak genetik antar domba garut tipe tangkas dengan tipe pedaging. Med. Pet., 30: 129138.Google Scholar
Mavule, B.S., Muchenjeb, V., Bezuidenhout, C.C. & Kunene, N.W. 2012. Morphological structure of Zulu sheep based on principal component analysis of body measurements. Small Rumin. Res., 111: 2330. Retrieved from http://dx.doi.org/10.1016/j.smallrumres.2012.09.008 Google Scholar
Nafti, M., Khaldi, Z., Rekik, B. & Ben, Gara A. 2009. Biodiversity in goats in the Tunisian oasis. Livestock Research for Rural Development. Volume 21, Article #178. Retrieved from http://www.lrrd.org/lrrd21/10/naft21178.htm Google Scholar
Noor, R.R. 2002. Genetika Ekologi. Laboratorium Pemuliaan dan Genetika Ternak. Bogor, Fakultas Peternakan, Institut Pertanian Bogor.Google Scholar
Okpeku, M., Yakubu, A., Peters, S.O., Ozoje, M.O., Ikeobi, C.O.N., Adebambo, O.A. & Imumorin, I.G. 2011. Application of multivariate principal component analysis to morphological characterization of indigenous goats in southern Nigeria. Acta argiculturae Slovenica, 98(2): 101109.Google Scholar
Pires, L.C., Machado, T.M.M., Araújo, A.M., Olson, T.A., Da Silva, L.J.B., Torres, R.A. & Costa, Mda S. 2012. Biometric variability of goat populations revealed by means of principal component analysis. Genet. Mol. Biol., 35(4): 777782.Google Scholar
Riva, J.n, Rizzi, R., Marelli, S. & Gavalchini, L.G. 2004. Body measurements in Bergamasca sheep. J. Small Rumin. Res., 55: 221227.Google Scholar
Salako, A.E. 2006. Principal component factor analysis of the morphostructure of immature Uda sheep. Int. J. Morphol., 24: 571574.Google Scholar
SAS. 2002. SAS/STAT User's Guide Release 9.0 Edition. Cary, North Carolina, SAS Institute Inc. Google Scholar
Silva, M.C., Lopesa, F.B., Vaz, C.M.S., Paulinic, F., Montesinosa, I.S., Fioravantia, M.C.S., Mcmanus, C. & Sereno, J.R.B. 2013. Morphometric traits in Crioula Lanada ewes in Southern Brazil. Small Rumin. Res., 110: 1519.Google Scholar
Traoré, A., Tamboura, H.H., Kabore, A., Royo, L.J., Fernandez, I., Alvarez, I., Sangare, M., Bouchel, D., Poivey, J.P., Francois, D., Sawadogo, L. & Goyache, F. 2008. Multivariate analyses on morphological traits of goats in Burkina Faso. Arch. Tierz. Dummerstorf, 51: 588600.Google Scholar
Yadav, D.K., Jain, A., Kulkarni, V.S., Govindaiah, M.G., Aswathnarayan, T. & Sadana, D.K. 2013. Classification of four ovine breeds of southern peninsular zone of India, morphometric study using classical discriminant function analysis. SpringerPlus, 2: 29.Google Scholar
Yakubu, A., Salako, A.E. & Imumorin, I.G. 2011. Comparative multivariate analysis of biometric traits of West African Dwarf and Red Sokoto goats. Trop. Anim. Health. Prod., 43: 561566.CrossRefGoogle ScholarPubMed
Yakubu, A. 2013. Principal component analysis of the conformation traits of yankasa sheep. Biotechnology in Animal Husbandry, 29(1): 6574.Google Scholar