Hostname: page-component-78c5997874-s2hrs Total loading time: 0 Render date: 2024-11-02T20:37:48.388Z Has data issue: false hasContentIssue false

Multifactorial discriminant analysis of morphological and heat-tolerant traits in indigenous, exotic and cross-bred turkeys in Nigeria

Published online by Cambridge University Press:  18 June 2012

A. Yakubu
Affiliation:
Department of Animal Science, Faculty of Agriculture, Nasarawa State University, Keffi, Shabu-Lafia Campus, P.M.B. 135 Lafia, Nasarawa State, Nigeria
S.O. Peters*
Affiliation:
Department of Animal Breeding and Genetics, College of Animal Science and Livestock Production, University of Agriculture, Abeokuta P.M.B. 2240, Abeokuta, Nigeria Department of Animal Science, Cornell University, Ithaca, NY 14853, USA
B.M. Ilori
Affiliation:
Department of Animal Breeding and Genetics, College of Animal Science and Livestock Production, University of Agriculture, Abeokuta P.M.B. 2240, Abeokuta, Nigeria
I.G. Imumorin
Affiliation:
Department of Animal Science, Cornell University, Ithaca, NY 14853, USA
M.A. Adeleke
Affiliation:
Department of Animal Breeding and Genetics, College of Animal Science and Livestock Production, University of Agriculture, Abeokuta P.M.B. 2240, Abeokuta, Nigeria
M.I. Takeet
Affiliation:
Department of Veterinary Microbiology and Parasitology, College of Veterinary Medicine, University of Agriculture, Abeokuta P.M.B. 2240, Abeokuta, Nigeria
M.O. Ozoje
Affiliation:
Department of Animal Breeding and Genetics, College of Animal Science and Livestock Production, University of Agriculture, Abeokuta P.M.B. 2240, Abeokuta, Nigeria
C.O.N. Ikeobi
Affiliation:
Department of Animal Breeding and Genetics, College of Animal Science and Livestock Production, University of Agriculture, Abeokuta P.M.B. 2240, Abeokuta, Nigeria
O.A. Adebambo
Affiliation:
Department of Animal Breeding and Genetics, College of Animal Science and Livestock Production, University of Agriculture, Abeokuta P.M.B. 2240, Abeokuta, Nigeria
*
Correspondence to: Dr S.O. Peters. email: [email protected]
Get access

Summary

This investigation explored the ability to distinguish the morphological and heat-tolerant traits of Nigerian indigenous, exotic and cross-bred turkeys using multivariate discriminant analysis. A total of 228 turkeys that were 20 weeks old were utilized in the study. The body parameters measured were body weight (BW), body length (BL), shank length (SL), thigh length (TL), keel length (KL), breast girth (BG), rectal temperature (RT), pulse rate (PR), respiratory rate (RR) and heat stress index (HI). Analysis of variance revealed that the exotic turkeys had significantly (p < 0.05) higher values than Nigerian indigenous and cross-bred turkeys in all the morphological traits with the exception of TL. However, the indigenous and cross-bred turkeys appeared to have more adaptive capability than the exotic ones based on their low HI. Sexual dimorphism was observed only in the morphological traits with male birds having significantly (p < 0.05) higher BW, BL, SL, TL and KL than that in females. However, the stepwise discriminant analysis revealed that BW, TL and HI were the most discriminating variables to separate the three genetic groups. The longest Mahalanobis distance was observed between the indigenous and exotic turkeys (36.68) while the shortest distance was recorded for the indigenous turkeys and their cross-bred counterparts (7.97). The canonical plot revealed the heterogeneity of the turkey populations as the birds clustered separately. In the nearest-neighbour discriminant analysis, 100.00, 98.73 and 96.43 percent of exotic, cross-bred and indigenous turkeys were correctly assigned into their source genetic groups. The present findings could aid the implementation of a conservation and improvement strategy of indigenous turkeys towards sustainable development of animal genetic resources.

Résumé

Cette étude a examiné la capacité d'identifier les caractères morphologiques et de tolérance à la chaleur des dindes indigènes, exotiques et croisées au Nigéria en utilisant l'analyse multidimensionnelle discriminante. Au total, 228 dindes, âgées de 20 semaines, ont été utilisées pour cette recherche. Les paramètres utilisés ont été le poids corporel, la longueur du corps, du tarse, de la cuisse et du bréchet, la circonférence de la poitrine, la température rectale, la fréquence du pouls, la fréquence respiratoire et l'indice de contrainte thermique. L'analyse de la variance a révélé que les dindes exotiques présentaient des valeurs considérablement plus élevées (p < 0,05) par rapport aux dindes nigériennes indigènes et croisées pour tous les caractères morphologiques, à l'exception de la longueur de la cuisse. Cependant, la capacité adaptative des dindes indigènes et croisées, sur la base de leur indice de contrainte thermique modéré, semblait supérieure à celle des races exotiques. Le dimorphisme sexuel n'a été observé que dans les caractères morphologiques des mâles qui présentaient des valeurs plus élevées que les femelles pour le poids corporel, la longueur du corps, du tarse, de la cuisse et du bréchet. Toutefois, l'analyse discriminante progressive a révélé que le poids corporel, la longueur de la cuisse et l'indice de contrainte thermique étaient les variables les plus discriminantes dans la répartition des trois groupes génétiques. La distance de Mahalanobis la plus importante a été observée entre les dindes indigènes et exotiques (36,68) tandis que la plus courte a été enregistrée entre les dindes indigènes et leurs homologues croisés (7,97). Les graphiques canoniques ont indiqué l'hétérogénéité des populations de dindes lorsque les oiseaux se regroupaient séparément. Dans l'analyse discriminante de leur voisin le plus proche, 100 pour cent des dindes exotiques, 98,73 pour cent des croisées et 96,43 pour cent des indigènes ont été correctement attribués à leurs groupes génétiques d'origine. Les conclusions de l'étude pourraient contribuer à l'élaboration d'une stratégie de conservation et d'amélioration des dindes indigènes entraînant une mise en valeur durable des ressources zoogénétiques.

Resumen

Este estudio examina la capacidad para distinguir los rasgos morfológicos y de tolerancia al calor en pavos autóctonos, exóticos y cruzados en Nigeria mediante el análisis discriminante multivariado. Un total de 228 pavos de 20 semanas de edad fueron utilizados en el estudio. Los parámetros corporales medidos fueron el peso corporal (BW), diámetro longitudinal (BL), longitud del tarso (SL), longitud del muslo (TL), longitud de quilla (KL), perímetro torácico (BG), temperatura rectal (RT), frecuencia del pulso (PR), frecuencia respiratoria (FR) y el índice de estrés térmico (HI). El análisis de la varianza reveló que los pavos exóticos mostraban valores significativamente (p < 0,05) mayores que los pavos autóctonos de Nigeria y que los cruzados para todos los rasgos morfológicos, con la excepción de la TL. Sin embargo, los pavos autóctonos y los cruzados parecían tener más capacidad de adaptación que los exóticos en base a valores de HI más bajos. El dimorfismo sexual se observó sólo en los caracteres morfológicos, donde los machos presentaron de forma significativa (p < 0,05) un mayor BW, BL, SL, TL y KL que en las hembras. Sin embargo, el análisis discriminante por pasos reveló que BW, TL y HI, fueron las variables más discriminantes a la hora de separar los tres grupos genéticos. La mayor distancia de Mahalanobis se observó entre los pavos autóctonos y exóticos (36,68), mientras que la distancia más corta se registró entre los pavos autóctonos y los cruzados (7,97). El diagrama canónico puso de manifiesto la heterogeneidad de las poblaciones de pavo, agrupando las aves por separado. En el nivel de asignación más cercano del análisis discriminante, el 100,00%, el 98,73 % y el 96,43 % de pavos exóticos, cruzados y autóctonos fueron asignados correctamente en sus grupos de origen genético. Los presentes hallazgos podrían ayudar a la implementación de una estrategia de conservación y mejora de los pavos autóctonos hacia el desarrollo sostenible de los recursos zoogenéticos.

Type
Research Article
Copyright
Copyright © Food and Agriculture Organization of the United Nations 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abdelqader, A., Wollny, C.B.A. & Gauly, M. 2008. On farm investigation of local chicken biodiversity and performance potentials in rural areas of Jordan. Anim. Genet. Resour. Inform., 43: 4958.Google Scholar
Al-Atiyat, R. 2009. Diversity of chicken populations in Jordan determined using discriminate analysis of performance traits. Int. J. Agric. Biol., 11: 374380.Google Scholar
Baeza, E., Williams, J., Guemene, D. & Duclos, M.J. 2001. Sexual dimorphism for growth in Muscovy ducks and changes in insulin-like growth factor I (IGF- I), growth hormone (GH) and triiodothyronine (T3) plasma levels. Reprod. Nutr. Dev., 41: 173179.CrossRefGoogle ScholarPubMed
Benabdeljelil, K. & Arfaoui, T. 2001. Characterization of Beldi chicken and turkeys in rural poultry flocks of Morroco. Current state and future outlook. Anim. Genet. Resour. Inform., 31: 8795.CrossRefGoogle Scholar
Blondel, J., Perret, P., Anstett, M.-C. & Thebaud, C. 2002. Evolution of sexual size dimorphism in birds: test of hypotheses using blue tits in contrasted Mediterranean habitats. J. Evol. Biol., 15: 440450.Google Scholar
Camacho-Escobar, M.A., Ramirez-Cancino, L., Lira-Torres, I. & Hernandez-Sanchez, V. 2008. Phenotypic characterization of the Guajolote (Meleagris gallopavo gallopavo) in Mexico. Anim. Genet. Resour. Inform., 43: 5966.Google Scholar
Case, L.A., Miller, S.P. & Wood, B.J. 2010. Factors affecting breast meat yield in turkeys. World's Poult. Sci. J., 66: 189202.Google Scholar
Castanheira, M., Paiva, S.R., Louvandini, H., Landim, A., Fiorvanti, M.C.S., Dallago, B.S., Correa, P.S. & McManus, C. 2011. Use of heat tolerance traits in discriminating between groups of sheep in central Brazil. Trop. Anim. Health Prod., 42: 18211828.Google Scholar
Cerolini, S., Madeddu, M., Zaniboni, L., Cassinelli, C., Mangiagalli, M.G. & Marelli, S.P. 2010. Breeding performance in the Italian chicken breed Mericanel della Brianza. Ital. J. Anim. Sci., 9: 382385.CrossRefGoogle Scholar
Chen, C.F., Bordas, A., Gourichon, D. & Tixier-Boichard, M. 2004. Effect of high ambient temperature and naked neck genotype on performance of dwarf brown-egg layers selected for improved clutch length. Br. Poult. Sci., 45: 346354.CrossRefGoogle ScholarPubMed
Dana, N., van der Waaij, L.H., Dessie, T. & van Arendonk, J.A.M. 2010. Production objectives and trait preferences of village poultry producers of Ethiopia: implications for designing breeding schemes utilizing indigenous chicken genetic resources. Trop. Anim. Health Prod., 42: 15191529.CrossRefGoogle ScholarPubMed
FAO. 2009. Characterization of indigenous chicken production systems in Cambodia. Prepared by Dinesh, M.T., Geerlings, E., Solkner, J., Thea, S., Thieme, O. and Wurzinger, M. AHBL – Promoting strategies for prevention and control of HPAI. Rome.Google Scholar
FAOSTAT. 2011. Food and Agriculture Organization of the United Nations. (available at http://faostat.fao.org/default.aspx). Accessed 19 July 2011.Google Scholar
Francesch, A., Villalba, I. & Cartana, M. 2011. Methodology for morphological characterization of chicken and its application to compare Penedesenca and Empordanesa breeds. Anim. Genet. Resour., 48: 7984.Google Scholar
Hoffman, I. 2010. Livestock biodiversity. Rev. Sci. Tech. Off. Int. Epiz., 29: 7386.Google Scholar
Ilori, B.M., Peters, S.O., Ikeobi, C.O.N., Bamgbose, A.M., Isidahomen, C.E. & Ozoje, M.O. 2010. Comparative assessment of growth in pure and crossbred turkeys in a humid tropical environment. Int. J. Poult. Sci., 9: 368375.Google Scholar
Kohler-Rollefson, I., Rathore, H.S. & Mathias, E. 2009. Local breeds, livelihoods and livestock keepers' rights in South Asia. Trop. Anim. Health Prod., 41: 10611070.CrossRefGoogle ScholarPubMed
Kolmodin, R., Strandberg, E., Jorjani, H. & Danell, B. 2003. Selection in the presence of a genotype by environment interaction: response in environmental sensitivity. Anim. Sci., 76: 375385.Google Scholar
Korte, S.M., Koolhaas, J.M., Wingfield, J.C. & McEwen, B.S. 2005. The Darwinian concept of stress: Benefits of allostasis and costs of allostatic load and the trade-offs in health and disease. Neurosci. Behav. Rev., 29: 338.CrossRefGoogle ScholarPubMed
Melesse, A. 2011. Performance and physiological responses of naked-neck chickens and their F1 crosses with commercial layer breeds to long-term high ambient temperature. Global Vet., 6: 272280.Google Scholar
Melesse, A. & Negesse, T. 2011. Phenotypic and morphological characterization of indigenous chicken populations in southern region of Ethiopia. Anim. Genet. Resour., 49: 1931 DOI: 10:1017/S2078633611000099.Google Scholar
Mulyono, R.H., Sartika, T. & Nugraha, R.D. 2009. A study of morphometric-phenotypic characteristics of Indonesian chicken: Kampong, Sentul and Wareng-Tangerang, based on discriminant analysis, Wald-Anderson criteria and Mahalanobis minimum distance. The 1st International Seminar on Animal Industry, Faculty of Animal Science, Bogor Agricultural University, Indonesia.Google Scholar
Oladimeji, B.S., Osinowo, O.A., Alawa, J.P. & Hambolu, J.O. 1996. Estimation of average values for pulse rate, respiratory rate and rectal temperature and development of a heat stress index for adult Yankassa sheep. Bull. Anim. Health Prod. Afr., 44: 105107.Google Scholar
Rege, J.E.O. & Okeyo, A.M. 2010. Improving our knowledge of tropical indigenous animal genetic resources. In Ojango, J.M., Malmfors, B. & Okeyo, A.M. eds. Animal genetic s training resource, version 3, 2010. International Livestock Research Institute, Nairobi, Kenya and Swedish University of Agricultural Sciences, Uppsala, Sweden.Google Scholar
Rosario, M.F., Silvia, M.A.N., Coelho, A.A.D., Savino, V.J.M. & Dias, C.T.S. 2008. Canonical discriminate analysis applied to broiler chicken performance. Animal, 2: 419424.CrossRefGoogle ScholarPubMed
SAS. 2010. Statistical analysis system. SAS Stat. SAS Institute Inc., Cary, NC, USA.Google Scholar
Sponenberg, D.P. & Bixby, D.E. 2007. Managing breeds for a secure future – strategies for breeders and breed associations. The American Livestock Breeds Conservancy, NC, USA. ISBN: 1-887316-07-8. 209 pp.Google Scholar
Sponenberg, D.P., Hawes, R.O., Johnson, P. & Christman, C.J. 2000. Turkey conservation in the United States. Anim. Genet. Resour. Inform., 27: 5966.CrossRefGoogle Scholar
Tickle, P.G. & Codd, J.R. 2009. Ontogenetic development of the uncinate processes in the domestic turkey (Meleagris gallopavo). Poult. Sci., 88: 179184.Google Scholar
Yakubu, A. 2011. Discriminant analysis of sexual dimorphism in morphological traits of African Muscovy ducks. Archiv. Zootec., 60: 11151123.CrossRefGoogle Scholar
Yakubu, A., Akinfemi, A., Abimiku, H.K. & Hassan, D.I. 2010. Application of canonical discriminant analysis to performance traits in broiler strains. Nig. Poult. Sci. J., 7(2): 8488.Google Scholar
Yakubu, A. & Ibrahim, I.A. 2011. Multivariate analysis of morphostructural characteristics in Nigerian indigenous sheep. Ital. J. Anim. Sci., 10: 8386.CrossRefGoogle Scholar
Yakubu, A., Kaankuka, F.G. & Ugbo, S.B. 2011. Morphometric traits of muscovy ducks from two agro-ecological zones of Nigeria. Tropicultura, 29: 121124.Google Scholar
Yakubu, A., Kuje, D. & Okpeku, M. 2009. Principal components as measure of size and shape in Nigerian indigenous chickens. Thai J. Agric. Sci., 42: 167176.Google Scholar
Zanetti, E. 2009. Genetic, phenotypic and proteomic characterization of local chicken breeds. Department of Animal Science, Universita Degli Studi Di Padova, Italy. p. 103 pp. (Ph.D. dissertation)Google Scholar