Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-28T19:52:11.047Z Has data issue: false hasContentIssue false

Morphometric, productive and reproductive traits of indigenous goose of Bangladesh

Published online by Cambridge University Press:  03 January 2017

M.F. Islam
Affiliation:
Department of Genetics and Animal Breeding, Faculty of Veterinary and Animal Science, Sylhet Agricultural University, Sylhet 3100, Bangladesh
M.M. Mia
Affiliation:
Department of Genetics and Animal Breeding, Faculty of Veterinary and Animal Science, Sylhet Agricultural University, Sylhet 3100, Bangladesh
M.A. Rahman
Affiliation:
Department of Genetics and Animal Breeding, Faculty of Veterinary and Animal Science, Sylhet Agricultural University, Sylhet 3100, Bangladesh
N. Bhowmik*
Affiliation:
Department of Genetics and Animal Breeding, Faculty of Veterinary and Animal Science, Sylhet Agricultural University, Sylhet 3100, Bangladesh
*
Correspondence to: N. Bhowmik, Department of Genetics and Animal Breeding, Faculty of Veterinary and Animal Science, Sylhet Agricultural University, Sylhet 3100, Bangladesh. email: [email protected]
Get access

Summary

The study was aimed to identify, characterize and describe the phenotypic variation of indigenous goose populations in Bangladesh. The research was conducted at Sylhet Sadar Upazilla in Sylhet district and encompassed about 141 geese (74 brown type and 67 white type). Least Square Mean ± SE of body length, wing span, shank length, beak length and head length of mature indigenous goose were 73.47 ± 0.95, 134.53 ± 1.38, 9.27 ± 0.09, 8.88 ± 0.10 and 6.42 ± 0.02 cm, respectively. Males were significantly (p < 0.01) higher than their female counterparts for all morphometric traits but no significant differences (p > 0.05) were found between two types. The body weight of indigenous goose at day old, 2-week, 1-month, 2-month and 10-month of age were 95.45 ± 0.88, 148.59 ± 1.55, 407.34 ± 7.27 gm, 1.19 ± 0.03 kg and 3.65 ± 0.06 kg, respectively. Males were significantly (p < 0.01) heavier than females in all age groups except day old gosling but no significant difference (p > 0.05) were observed for body weights between two types of goose. Egg weight, egg length, egg width, incubation period, clutch size, number of eggs in a breeding season and age at first egg were 131.85 ± 1.70 gm, 7.40 ± 0.02 cm, 5.22 ± 0.02 cm, 30.30 ± 0.07 days, 7.42 ± 0.08, 20.52 ± 0.38 and 313.22 ± 3.03 days, respectively. The number of eggs in a breeding season of brown type were significantly (p < 0.05) higher than that of white type goose. This study provides a bench mark for the morphometric traits and performance of goose in Bangladesh.

Résumé

Le but de l’étude a été d'identifier, de caractériser et de décrire la variabilité phénotypique des populations d'oies indigènes du Bangladesh. La recherche a été menée dans l'upazila de Sylhet Sadar au sein du district de Sylhet et a compris environ 141 oies (74 du type marron et 67 du type blanc). La moyenne des moindres carrés ± l'erreur-type de la longueur du corps, l'envergure des ailes, la longueur des tarses, la longueur du bec et la longueur de la tête des oies indigènes mûres ont été de 73,47 ± 0,95, 134,53 ± 1,38, 9,27 ± 0,09, 8,88 ± 0,10 et 6,42 ± 0,02 cm, respectivement. Pour tous les caractères morphométriques, les mesures des mâles ont été significativement (p < 0,01) supérieures à celles des femelles, alors qu'aucune différence significative (p > 0,05) n'a été décelée entre les deux types. Le poids corporel des oies indigènes à un jour, deux semaines, un mois, deux mois et dix mois d’âge a été de 95,45 ± 0,88 g, 148,59 ± 1,55 g, 407,34 ± 7,27 g, 1,19 ± 0,03 kg et 3,65 ± 0,06 kg, respectivement. Les mâles ont été significativement (p < 0,01) plus lourds que les femelles à tous les âges, hormis le cas des oisons d'un jour d’âge. Pourtant, aucune différence significative (p > 0,05) n'a été observée pour le poids corporel entre les deux types d'oie. Le poids de l’œuf, la longueur de l’œuf, la largeur de l’œuf, la durée de l'incubation, la taille de la couvée, le nombre d’œufs par saison reproductive et l’âge au premier œuf ont été de 131,85 ± 1,70 g, 7,40 ± 0,02 cm, 5,22 ± 0,02 cm, 30,30 ± 0,07 jours, 7,42 ± 0,08, 20,52 ± 0,38 et 313,22 ± 3,03 jours, respectivement. Le nombre d’œufs par saison reproductive a été significativement (p < 0,05) plus élevé chez le type marron que chez le type blanc d'oie. Cette étude sert de référence pour les traits morphométriques et la productivité des oies du Bangladesh.

Resumen

El estudio pretendió identificar, caracterizar y describir la variabilidad fenotípica de las poblaciones de gansos autóctonos de Bangladesh. La investigación fue llevada a cabo en la upazila de Sylhet Sadar en el distrito de Sylhet y abarcó alrededor de 141 gansos (74 del tipo marrón y 67 del tipo blanco). La media por mínimos cuadrados ± el error estándar de la longitud del cuerpo, la envergadura de las alas, la longitud de los tarsos, la longitud del pico y la longitud de la cabeza de los gansos autóctonos maduros fueron 73,47 ± 0,95, 134,53 ± 1,38, 9,27 ± 0,09, 8,88 ± 0,10 y 6,42 ± 0,02 cm, respectivamente. Para todos los parámetros morfométricos, las medidas de los machos fueron significativamente mayores (p < 0,01) que las de las hembras pero no se hallaron diferencias significativas (p > 0,05) entre los dos tipos. El peso corporal de los gansos autóctonos a un día, dos semanas, un mes, dos meses y diez meses de edad fue, respectivamente, de 95,45 ± 0,88, 148,59 ± 1,55, 407,34 ± 7,27 g, 1,19 ± 0,03 kg y 3,65 ± 0,06 kg. Los machos fueron significativamente (p < 0,01) más pesados que las hembras a todas las edades, excepto en el caso de los ansarones de un día de edad, y no se detectaron diferencias significativas (p > 0,05), para el peso corporal, entre los dos tipos de gansos. El peso del huevo, la longitud del huevo, la anchura del huevo, el periodo de incubación, el tamaño de la nidada, el número de huevos en cada estación reproductiva y la edad al primer huevo fueron, respectivamente, de 131,85 ± 1,70 g, 7,40 ± 0,02 cm, 5,22 ± 0,02 cm, 30,30 ± 0,07 días, 7,42 ± 0,08, 20,52 ± 0,38 y 313,22 ± 3,03 días. El número de huevos en la estación reproductiva fue significativamente mayor (p < 0,05) en el tipo marrón que en el tipo blanco de ganso. Este estudio sirve de referencia en materia de rasgos morfométricos y productividad de los gansos de Bangladesh.

Type
Research Article
Copyright
Copyright © Food and Agriculture Organization of the United Nations 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Banerjee, S. 2013. Morphological traits of duck and geese breeds of West Bengal, India. Anim. Genet. Resour., 52: 116.CrossRefGoogle Scholar
Bell, D.D. & Weaver, W.D. 2002. Commercial chicken meat and egg production. 5th ed. Cambridge, MA, USA, Kluwer Academic Publisher.CrossRefGoogle Scholar
Besbes, B. 2009. Genotype evaluation and breeding of poultry for performance under sub-optimal village conditions. World's Poult. Sci. J., 65: 260271.CrossRefGoogle Scholar
Bhatia, S. & Arora, R. 2005. Biodiversity and conservation of Indian sheep genetic resources: an overview. Asian-Australasian J. Anim. Sci., 18: 13871402.Google Scholar
Bhowmik, N., Mia, M.M. & Rahman, M.A. 2014. Morphometric measurements, productive and reproductive performance of Jalali pigeon. Int. J. Dev. Res., 4: 908911.Google Scholar
Boessneck, J. 1960. Zur Gänsehaltung im alten Ägypten. Wiener Tierärztliche Mo natsschrift (Festschrift Prof. Schreiber) pp. 192206. Wien: Urban.Google Scholar
Buckland, R. & Guy, G. 2002. Goose production. FAO Animal Production Health Paper, 154. United Nations, FAO.Google Scholar
Carboneras, C. 1992. Swan Goose. In Delhoyo, J., Elliott, A. and Sargatal, J., eds. Handbook of birds of the World, p. 581. Barcelona, Lynx Edicions.Google Scholar
Coulson, J.C. 1963. Egg size and shape in the Kittiwake and their use in estimating age composition of populations. Proc. Zool. Soc. Lond., 140: 211227.CrossRefGoogle Scholar
Crawford, R.D. 1984. Goose. In Mason, I.L. (ed). Evolution of domesticated animals, pp. 345349. London & New York, Longman.Google Scholar
Darwati, S., Martojo, H., Sumantri, C., Sihombing, D.T.H. & Mardiastuti, A. 2010. Productivity, repeatability of productive and reproductive traits of local Pigeon. J. Indonesian Trop. Anim. Agric., 35(4): 268274.Google Scholar
Desrochers, A. & Mcgrath, R.D. 1993. Age-specific fecundity in European Blackbirds (Turdusmerula): individual and population trends. Auk, 110: 255262.Google Scholar
Dunning, J.B. 1992. CRC handbook of avian body masses. Boca Raton, FL, USA, CRC Press. Google Scholar
Ensminger, M.E. 1992. Poultry production (Animal Agriculture Series), 3rd edition. Denville, Illinois, Interstate Publishers.Google Scholar
Gadow, H. 1891. Bronn's classes and order of the animal kingdom. Vol. 6, Ahteilung 4. Integument or system of outer skin. p. 483.Google Scholar
Harper, J. 1972. The tardy domestication of the duck. Agric. Hist., XLVI: 385389.Google Scholar
Hassen, F., Bekele, E., Ayalew, W. and Dessie, T. 2007. Genetic variability of five indigenous Ethiopian cattle breeds using RAPD markers. Afr. J. Biotechnol., 6: 22742279.Google Scholar
Hill, G.E. 2010. National geographic bird coloration. Washington, DC, USA, National Geographic Society.Google Scholar
Howell, S.N.G. & Dunn, J. 2007. Gulls of the Americas. New York, Houghton Mifflin Company.Google Scholar
Hugo, S. 1995. Geese: the underestimated species. World Anim. Rev., 43: 2429.Google Scholar
Kear, J. 1990. Man and wildfowl. London, Poyser.Google Scholar
Klomp, H. 1970. The determination of clutch-size in birds: a review. Ardea, 58: 1124.Google Scholar
Köhler-Rollefson, I., Rathore, H.S. and Mathias, E. 2009. Local breeds, livelihood and livestock keepers’ rights in South Asia. Trop. Anim. Health Prod., 41: 10611070.Google Scholar
Kohne, H.J. & Jones, J.E. 1975. Acid-base balance, plasma electrolytes and production performance of adult turkey hens under conditions of increasing ambient temperature. Poult. Sci., 54: 20382045.Google Scholar
Lamon, H.M. & Slocum, R.R. 1922. Ducks and geese. London, Orange Judd Publishing Company.Google Scholar
Leeson, S. & Summers, J.D. 1991. Commercial poultry nutrition. Guelph, Canada, University Books.Google Scholar
Leskanich, C.O. & Noble, R.C. 1997. Manipulation of n-3 polyunsaturated fatty acid composition of avian eggs and meat. World's Poult. Sci. J., 53: 155183.Google Scholar
MacDonald, K. & Bench, R. 2000. Geese. In Kiple, K.F. and Coneè Ornelas, K. eds. The Cambridge world history of food, pp. 529531. Cambridge, Cambridge University Press.CrossRefGoogle Scholar
Madge, S. & Burn, H. 1987. Wildfowl: an identification guide to the Ducks, Geeseand Swans of the world. London, Christopher Helm, pp. 188189.Google Scholar
Mancha, Y.P. 2004. Characterization of local chickens in Northern part of the Jos Plateau . Animal Production Programme, School of Agriculture, ATBU, Bauchi. (A PhD Thesis)Google Scholar
Mazanowski, A. & Bernacki, Z. 2003. Characteristics of reproductive traits and egg traits in Graylag goose (Anser anser L.) crossbreds. Archiv Fur Geflugelkunde, 70(2): 5663.Google Scholar
Mazanowski, A., Dziadek, K. and Adamski, M. 2002. Reproductive and meat traits of triple crosses with Graylag geese (in Polish). Roczniki Naukowe Zootechniki, 29(1): 105120.Google Scholar
Melvin, L.H. 2008. Raising geese. http://www.ultimatefowl.com/viewtopic.php?f=33&t=473 Accessed February 2014.Google Scholar
Monaghan, P. & Nager, R.G. 1997. Why don't birds lay more eggs? Trends Ecol. Evol., 12: 270274.Google Scholar
Muhiuddin, G. 1993. Estimates of genetic and phenotypic parameters of some performance traits in beef cattle. Anim. Breed. Abstr., 66: 495522.Google Scholar
Murphy, T.M. (1994). Breeding patterns of Eastern Phoebesin Kansas: adaptive strategies or physiological constraint? Auk, 111: 617633.Google Scholar
National Research Council 1991. Microlivestock: little-known small animals with a promising economic future. Washington, DC, National Academy Press.Google Scholar
Ogilvie, M.A. & Young, S. 2004. Wildfowl of the world. 1/66 Lower Gibbes St, Chatswood NSW 2067, Australia, New Holland Publishers.Google Scholar
Perrins, C.M. 1970. The timing of birds breeding seasons. Int. J. Avian Sci., 112: 242255.Google Scholar
Petersen, J., Chima, M.M. & Horst, P. 1976. Importance of body temperature as parameter of acclimatization in the laying chicken. Zeitschrift für Tierzüchtung und Züchtungsbiologie, 93: 237251.CrossRefGoogle Scholar
Petersen, C.F., Sauter, E.A., Steele, E.E. & Parkinson, J.F. 1983. Use of methionine intake restriction to improve egg shell quality by control of egg weight. Poult. Sci., 62: 20442047.Google Scholar
Pienkowski, M.W. & Minton, C.D.T. 1973. Wing length changes of the Knot with age and time since moult. Bird Stud., 20: 6368.Google Scholar
Proudfoot, F.G. & Hulan, H.W. 1981. The influence of hatching egg size on the subsequent performance of broiler chickens. Poult. Sci., 60: 25302541.Google Scholar
Ralph, C.L. 1969. The control of color in birds. Am. Zool., 9: 521530.CrossRefGoogle ScholarPubMed
Rohwer, F.C. 1992. The evolution of reproductive patterns in waterfowl. In Batt, B.D.J., Afton, A.D., Anderson, M.G., Ankney, C.D., Johnson, D.H., Kadlec, J.A. and Krapu, G.L. eds., The Ecology and Management of Breeding Waterfowl, pp. 486–539. Minneapolis, MN, USA, University of Minnesota Press. Google Scholar
Rosinski, A. 2000. Analysis of direct and correlated effects of selection in two geese strains (in Polish). Rocz. AR Pozna, 309: 5107.Google Scholar
Sarker, S. 2015. What the duck? http://www.dhakatribune.com/weekend/2015/aug/20/what-duck/ Accessed 03 March 2016.Google Scholar
SAS 1998. SAS Users’ guide. SAS Institute Inc., Cary, USA, North Carolina.Google Scholar
Scragg, R.H., Logan, N.B. & Geddes, N. 1987. Response of egg weight to the inclusion of various fats in layer diets. Br. Poult. Sci., 28: 1521.Google Scholar
Sheikh, F. 2013. Breeding and rearing of geese. http://thepoultryguide.com/breeding-and-rearing-of-geese/ Accessed Februry 2014.Google Scholar
Sidadolog, J.H.P. 1999. Handout of poultry husbandry, faculty of animal sciences. Yogyakarta, Indonesia, Gadjah Mada University.Google Scholar
Skogland, W.C. & Seagar, K.C. 1952. Growth of broiler chicks hatched from various eggs when reared in competition with each other. Poult. Sci., 31: 796799.Google Scholar
Summers, J.D. & Leeson, S. 1985. Poultry nutrition handbook. Rev. ed. Guelph, Ontario, Canada, Dept. of Animal and Poultry Science, Ontario Agricultural College, University of Guelph.Google Scholar
Tixier-Boichard, M., Ayalew, W. & Jianlin, H. 2008. Inventory, characterization and monitoring. Anim. Genet. Resour. Inf. Bull., 42: 2947.CrossRefGoogle Scholar
Upadhyaya, S. & Saikia, P.K. 2012. Clutch size and egg characteristics of Cotton Pygmy-Goose in Assam (India). Asian J. Conserv. Biol., 1: 3134.Google Scholar
Visser, J. 1976. An evaluation of factors affecting wing length in the coot Fulica atra. Ardea, 64: 121.Google Scholar
Willin, E.S. 1995. Relation between egg weight and intensity of growth in geese.Preliminary Proceedings, 10th European Symp. on waterfowl, World's Poultry Science Association, Halle, Germany. pp. 362365.Google Scholar
Wright, L. 2010. Chapter 4: Raising your own. In Natural Living: The 21st Century Guide to a Self-Sufficient Lifestyle. London, UK, Octopus Publishing Group Limited.Google Scholar
Wu, K. 2014. White Chinese goose. http://www.angrin.tlri.gov.tw/english/grine/whitegoose.html/ Accessed February 2014.Google Scholar
Yuwanta, T. 1999. Personal communication. Yogyakarta, 55281, Indonesia, Faculty of Animal Science, Gadjah Mada University.Google Scholar
Zarate, A.V. 1996. Breeding strategies for marginal regions in the tropics and subtropics. Anim. Res. Dev., 43: 99118.Google Scholar