Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-27T17:30:37.288Z Has data issue: false hasContentIssue false

Inventory, characterization and monitoring

Published online by Cambridge University Press:  01 August 2011

M. Tixier-Boichard
Affiliation:
Institut National de la Recherche Agronomique (INRA), AgroParisTech, UMR1236 Génétique et Diversité Animales, F-78350 Jouy-en-Josas, France Département sectoriel A4, “Biotechnologies - Ressources - Agronomie”, Direction Générale de la Recherche et de l'Innovation, Ministère de l'Enseignement Supérieur et de la Recherche, 1 rue Descartes, F-75231 Paris, France
W. Ayalew
Affiliation:
National Agricultural Research Institute (NARI), P.O. Box 1639, Lae 411, Morobe Province, Papua New Guinea
H. Jianlin
Affiliation:
CAAS-ILRI Joint Laboratory on Livestock and Forage Genetic Resources, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), No. 2, Yuan Min Yuan Xi Lu, Haidian District, Beijing 100094, P.R. China
Get access

Summary

Inventory of species and breeds, their population sizes, geographic distribution and possibly their genetic diversity is generally undertaken as a first step in any national programme for the management of animal genetic resources for food and agriculture. The primary purpose of such an assessment is to document the current state of knowledge in terms of a population's ability to survive, reproduce, produce and provide services to farmers. Starting an inventory requires some knowledge of the inventory items and their characteristic attributes. Inventory and characterization are, therefore, complementary processes, in which the characterization step provides the baseline information as well as the criteria that will be used to establish and update the inventory. Characterization provides data on present and potential future uses of the animal genetic resources under consideration, and establishes their current state as distinct breed populations and their risk status. As use and management of animal genetic resources are dynamic processes, monitoring the status of a population has to be done on a regular basis. Thus, risk status indicators for use during the monitoring process need to be defined following the inventory and characterization steps.

This paper discusses methods and criteria currently available, from research and past experience, for inventory, characterization and monitoring of animal genetic resources, with the view to assist in the development of a more comprehensive framework. Particular consideration is given to emerging tools and technologies. The scope of the review includes all livestock species and their wild ancestors and wild related species. Examples focus on cattle, sheep, goats, pigs and chickens.

Résumé

L'inventaire des espèces et des races, la taille des populations, la distribution géographique et si possible leur diversité génétique, est en général le premier pas à accomplir dans un programme national pour la gestion des ressources génétiques animales pour l'alimentation et l'agriculture. Le principal objectif de ce genre d'évaluation est de documenter la situation actuelle en termes de connaissances sur la capacité de survivre et de se reproduire d'une population, ainsi que d'offrir des services aux éleveurs. Pour initier un inventaire il est nécessaire de disposer de certaines connaissances sur les points principaux et sur les attributions des caractéristiques. En outre, inventaire et caractérisation sont des procédures complémentaires étant donné que la caractérisation fourni l'information de base et les critères qui s'utiliseront pour établir et mettre à jour l'inventaire. Tenant compte que l'utilisation et la gestion des ressources génétiques animales sont des procédures dynamiques, le suivi d'une population doit être réalisé sur des bases concrètes. Pour cette raison, il est nécessaire de définir les indicateurs pour les situations de risque qui seront utilisés pendant le suivi tenant compte des différents points de l'inventaire et de la caractérisation.

L'article présente les méthodes et critères disponibles actuellement à partir de la recherche et des expériences passées pour classer, caractériser et suivre les ressources génétiques animales dans le but d'aider au développement d'un réseau plus efficace. Ont souligne en particulier les nouveaux outils et technologies. L'objectif de cette révision comprend toutes les espèces d'élevage ainsi que leurs ancêtres sauvages et les espèces sauvages voisines. Certains exemples se sont centré sur les bovins, ovins, caprins, porcins et volailles.

Resumen

El inventario de las especies y razas, el tamaño de sus poblaciones, su distribución geográfica y posiblemente su diversidad genética es en general lo que se hace como primer paso en un programa nacional para la gestión de los recursos zoogenéticos para la alimentación y la agricultura. El principal propósito de este tipo de evaluación es documentar la situación actual en términos de conocimientos sobre la capacidad de sobrevivir y de reproducirse de una población, y de proveer y producir servicios para los ganaderos. Iniciar un inventario requiere algunos conocimientos sobre los puntos de un inventario y la atribución de sus características. Por lo tanto, inventario y caracterización son procesos complementarios en los que el paso de la caracterización proporciona la información de base así como los criterios que se utilizaran para establecer y poner al día el inventario. La caracterización proporciona datos sobre el uso actual y potencial futuro de los recursos zoogenéticos en estudio, y establece cual es el estado actual de cada población de razas y situación de riesgo. Teniendo en cuenta que la utilización y gestión de los recursos zoogenéticos son procesos dinámicos, el seguimiento de la situación de una población debe llevarse a cabo sobre bases regulares. Por lo tanto, se necesitan definir indicadores sobre situaciones de riesgo para su utilización durante el seguimiento en base a los puntos del inventario y de la caracterización.

El articulo discute métodos y criterios disponibles actualmente provenientes de la investigación y de experiencias pasadas para inventariar, caracterizar y monitorear los recursos zoogenéticos, con vistas a asistir al desarrollo de una red mas efectiva. Se da particular consideración a las nuevas herramientas y tecnologías. El objetivo de esta revisión incluye todas las especies ganaderas y sus antepasados salvajes así como especies salvajes relacionadas. Algunos ejemplos se han centrado en bovinos, ovinos, caprinos, porcinos y especies avícolas.

Type
Research Articles
Copyright
Copyright © Food and Agriculture Organization of the United Nations 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

List of references

FAO. 1993. Secondary Guidelines for Development of National Farm Animal Genetic Resources Management Plans. Measurement of Domestic Animal Diversity (MoDAD): Original Working Group Report. Rome.Google Scholar
FAO. 1998. Report: Working group on production environment descriptors for farm animal genetic resources. Report of a Working Group, held in Armidale, Australia, 19-21 January 1998. Rome.Google Scholar
FAO. 2007. The State of the World's Animal Genetic Resources for Food and Agriculture, edited by Rischkowsky, B. & Pilling, D.. Rome, (also available at ftp://ftp.fao.org/docrep/fao/010/al250e/al250e.pdf), pp. 511.Google Scholar
FAO/ISAG. 2004. Secondary Guidelines. Measurement of Domestic Animal Diversity (MoDAD): New recommended microsatellite markers. (also available at. http://dad.fao.org/cgi-bin/getblob.cgi?sid=-l,50005882).Google Scholar
Fikse, W.F. & Philipsson, J. 2007. Development of international genetic evaluations of dairy cattle for sustainable breeding programs. Animal Genetic Resources Information Bulletin, 41, 2944.CrossRefGoogle Scholar
Hillel, J., Granevitze, Z., Twito, T., Ben-Avraham, D., Blum, S., Lavi, U., David, L., Feldman, M.W., Cheng, H. & Weigend, S. 2007. Molecular markers for the assessment of chicken biodiversity. World Poultry Science Journal, 63: 3345.CrossRefGoogle Scholar
International Chicken Polymorphism Map Consortium. 2004. A genetic variation map for chicken with 2.8 million single-nucleotide polymorphisms. Nature, 432(7018): 717722.CrossRefGoogle Scholar
OECD. 2001. OECD Expert meeting on agri-biodiversity indicators. Summary and recommendations. 5-8 November 2001, Zurich, Switzerland. (also available at ftp://ftp.fao.org/agl/agll/ladadocs/oecd_zurich.doc).Google Scholar
Oldenbroek, K. (Ed.). 2007. Utilization and conservation of farm animal genetic resources. Wageningen, the Netherlands, Wageningen Academic Publishers, pp. 103130.Google Scholar
Pérez Centeno, M., Lanari, M.R., Romero, P., Monacci, L., Zimerman, M., Barrionuevo, M., Vázquez, A., Champredonde, M., Rocca, J., López Raggi, F. & Domingo, E. 2007. Puesta en valor de un sistema tradicional y de sus recursos genéticos mediante una Indicación Geográfica: El proceso de la Carne Caprina del Norte Neuquino en la Patagonia Argentina. Animal Genetic Resources Information Bulletin, 41, 1724.Google Scholar
Peter, C., Bruford, M., Perez, T., Dalamitra, S., Hewitt, G., Erhardt, G. & The Econogene Consortium, 2007. Genetic diversity and subdivision of 57 European and Middle-Eastern sheep breeds Animal Genetics, 38: 3744.Google Scholar
Rosenberg, N.A., Burke, T., Elo, K., Feldman, M.W., Freidlin, P.J., Groenen, M.A.M., Hillel, J., Maki-Tanila, A., Tixier-Boichard, M., Vignal, A., Wimmers, K., Weigend, S. 2001. Empirical evaluation of genetic clustering methods using multilocus genotypes from 20 chicken breeds. Genetics, 159, 699713.CrossRefGoogle ScholarPubMed
SanCristobal, M., Chevalet, C., Haley, C.S., Joosten, R., Rattink, A.P., Harlizius, B., Groenen, M.A.M., Amigues, Y., Boscher, M.Y., Russell, G., Law, A., Davoli, R., Russo, V., Désautés, C., Alderson, L., Fimland, E., Bagga, M., Delgado, J.V., Vega-Pla, J.L., Martinez, A.M., Ramos, M., Glodek, P., Meyer, J.N., Gandini, G.C., Matassino, D., Plastow, G.S., Siggens, K.W., Laval, G., Archibald, A.L., Milan, D., Hammond, K. & Cardellino, R. 2006. Genetic diversity within and between European pig breeds using microsatellite markers. Animal Genetics, 37: 189198.CrossRefGoogle ScholarPubMed
Verrier, E., Tixier-Boichard, M., Bernigaud, R. & Naves, M. 2005. Conservation and value of local livestock breeds: usefulness of niche products and/or adaptation to specific environments. Animal Genetic Resources Information Bulletin, 36, 2132CrossRefGoogle Scholar
Zenger, K.R., Khatkar, M.S., Cavanagh, J.A.L., Hawken, R.J. & Raadsma, H.W. 2007. Genome-wide genetic diversity of Holstein Friesian cattle reveals new insights into Australian and global population variability, including impact of selection. Animal Genetics, 38: 714.CrossRefGoogle ScholarPubMed
Ayalew, W., van Dorland, A. & Rowlands, J. (Eds). 2004. Design, execution and analysis of the livestock breed survey in Oromia Regional State, Ethiopia. Nairobi, OADB (Oromia Agricultural Development Bureau), Addis Ababa, and ILRI (International Livestock Research Institute), pp. 260.Google Scholar
Berthier, D., Chantal, I., Thévenon, S., Marti, J., Piouemal, D. & Maillard, J.C. 2006. Bovine transcriptome analysis by SAGE technology during an experimental Trypanosoma congolense infection. The Annals of the New York Academy of Sciences, 1081: 286299.CrossRefGoogle ScholarPubMed
Cunningham, E.P. & Meghen, C.M. 2001. Biological identification systems: genetic markers. Revue scientifique et technique de l'Office internationale des epizooties, 20: 491499.CrossRefGoogle ScholarPubMed
Doherty, M.K., McLean, L. & Beynon, R.J. 2007. Avian proteomics: advances, challenges and new technologies. Cytogenetics and Genome Research, 117: 358369.CrossRefGoogle ScholarPubMed
Drucker, A., Gomez, V. & Anderson, S. 2001. Economic valuation of farm animal genetic resources: a survey of available methods. Ecological Economics, 36 (1): 118.CrossRefGoogle Scholar
Eaton, D., Windid, J., Hiemstra, S.J., van Heller, M., Trach, N.X., Hao, P.X., Doan, B.H. & Hu, R., 2006. Indicators for livestock and crop biodiversity. Centre for Genetic Resources, CGN/DLO foundation, report 2006/05, Wageningen, the Netherlands.Google Scholar
FAO. 2006. A System of Integrated Agricultural Censuses and Surveys, Volume 1, World Programme for the Census of Agriculture 2010, (SDS No. 11). (also available at www.fao.org/es/ess/census/default.asp).Google Scholar
FAO. 2006. The role of biotechnology in exploring and protecting agricultural genetic resources, edited by Ruane, J. & Sonnino, A.. Rome. (also available at www.fao.org/docrep/009/a0399e/a0399e00.htm).Google Scholar
Freeman, A.R., Bradley, D.G., Nagda, S., Gibson, J.P. & Hanotte, O. 2006. Combination of multiple microsatellite datasets to investigate genetic diversity and admixture of domestic cattle. Animal Genetics, 37: 19.CrossRefGoogle Scholar
Gandini, G.C., Ollivier, L., Danell, B., Distl, O., Georgoudis, A., Groeneveld, E., Martyniuk, E., van Arendonk, J.A.M., & Woolliams, J.A. 2004. Criteria to assess the degree of endangerment of livestock breeds in Europe. Livestock Production Science, 91:173182.Google Scholar
Gibson, J.P. & Bishop, S.C. 2005. Use of molecular markers to enhance resistance of livestock to disease: a global approach. Revue scientifique et technique de l'Office internationale des epizooties, 24: 343353.Google Scholar
Gibson, J.P., Ayalew, W. & Hanotte, O. 2007. Measures of diversity as inputs for decisions in conservation of livestock genetic resources. In: Jarvis, D.I., Padoch, C. & Cooper, H. D. (Eds). Managing biodiversity in agricultural ecosystems. New York, Columbia University Press, pp. 117140.CrossRefGoogle Scholar
Hanotte, O., Bradley, D.G., Ochieng, J., Verjee, Y., Hill, E.W. & Rege, J.E.O. 2002. African pastoralism: genetic imprints of origins and migrations. Science, 296(5566): 336339.CrossRefGoogle ScholarPubMed
Kadarmideen, H.N., von Rohr, P. & Janss, L.L.G. 2006. From genetical genomics to systems genetics: potential applications in quantitative genomics and animal breeding. Mammalian Genome, 17: 548564.Google Scholar
Moazami-Goudarzi, K. & Laloe, D. 2002. Is a multivariate consensus representation of genetic relationships among populations always meaningful? Genetics, 162: 473484.CrossRefGoogle ScholarPubMed
Mburu, D.N., Ochieng, J.W., Kuria, S.G., Jianlin, H., Kaufmann, B., Rege, J.E.O. & Hanotte, O. 2003. Genetic diversity and relationships of indigenous Kenyan camel (Camelus dromedarius) populations: implications for their classification. Animal Genetics, 34: 2632.CrossRefGoogle ScholarPubMed
Muchadeyi, F.C., Eding, H., Wollny, C.B.A., Groeneveld, E., Makuza, S.M., Shamseldin, R., Simianer, H. & Weigend, S. 2007. Absence of population substructuring in Zimbabwe chicken ecotypes inferred using microsatellite analysis. Animal Genetics, 38: 332339.CrossRefGoogle ScholarPubMed
Pritchard, J.K., Stephens, M. & Donnelly, P. 2000. Inference of population structure using multilocus genotype data. Genetics, 155: 945959.CrossRefGoogle ScholarPubMed
Tano, K., Kamuanga, M., Faminow, M.D. & Swallow, B. 2003. Using conjoint analysis to estimate farmers' preferences for cattle traits in West Africa. Ecological Economics, 45(3): 393408.CrossRefGoogle Scholar
Tuggle, C.K., Wang, Y.F. & Couture, O. 2007. Advances in swine transcriptomics. International Journal of Biological Sciences, 3: 132152.CrossRefGoogle ScholarPubMed
Vignal, A., Milan, D., SanCristobal, M. & Eggen, A. 2002. A review on SNP and other types of molecular markers and their use in animal genetics. Genetics Selection Evolution, 34: 275305.Google Scholar