Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-27T07:14:44.987Z Has data issue: false hasContentIssue false

Genetic base and inbreeding of Canadienne, Brown Swiss, Holstein and Jersey cattle in Canada

Published online by Cambridge University Press:  01 August 2011

C. Hansen
Affiliation:
Centre for Food and Animal Research, Agriculture and Agri-Food Canada, Ottawa, Ontario K1A 0C6, Canada
J.N.B. Shrestha
Affiliation:
Centre for Food and Animal Research, Agriculture and Agri-Food Canada, Ottawa, Ontario K1A 0C6, Canada
R.J. Parker
Affiliation:
Department of Animal Science, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
G.H. Crow
Affiliation:
Department of Animal Science, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
J.N. Derr
Affiliation:
Department Veterinary Pathobiology, Texas A & M University, College Station, Texas 77845, USA
Get access

Summary

The narrowing of the genetic base is of major concern to many cattle breeders and this is a consequence of a small effective population size and an increase in the inbreeding coefficient in cattle populations. Studies of pedigrees of cattle populations found in Canada showed that the effective population size and rate of inbreeding over a 12-year period (1983–94) were 123 and 0.412 percent for Canadienne, 975 and 0.054 percent for Brown Swiss, and 2 183 and 0.024 percent for Jersey cattle populations. Over the same period, the year to year trends in inbreeding coefficients based on co-ancestry was 0.11 percent for Canadienne and 0.07 percent for Brown Swiss cattle populations, and 0.37 percent for Holstein bulls used by the artificial insemination industry. Inbreeding was not found to be a major problem in any of the populations examined. However, only 10 bulls of their respective breed sired 61 percent of the Canadienne, 21 percent of the Brown Swiss, and 29 percent of the Jersey cattle populations, and 41 percent of the Holstein bulls in the bull studs. More and more breeders are demanding proven sires to increase milk production from fewer cows resulting in the narrowing of the genetic base of the national cattle populations. Newer technology that provides precise genetic modification could further contribute to the narrowing of the genetic base compromising the ability to sustain current production and respond to changing markets in the long-term.

Résumé

Le rapprochement de la base génétique est une des questions qui inquiète le plus à la plupart des éleveurs et est la conséquence du nombre restreint de la population et de l'augmentation du coefficient de consanguinité dans les populations bovines. Les études de pedigree des populations bovines réalisées au Canada ont démontré que la taille effective de la population et le niveau de consanguinité sur une période de 12 ans (1983–1994) était de 123 et 0,412 pour cent pour la race Canadienne, 975 et 0,054 pour cent pour la Brune Suisse, et 2.183 et 0,024 pour cent pour les populations de Jersey. Sur la même période, la tendance annuelle des coefficient de consanguinité sur la base de co-ancêtre était de 0,11 pour cent pour la Canadienne et 0,07 pour cent pour la Brune Suisse, tandis que pour les taureaux Holstein utilisés par l'industrie d'insémination artificielle le pourcentageétait de 0,37. On n'a pas considéré le consanguinité un probléme important parmi les populations examinées. Cependant, sur 10 taureaux de chacune des races seulement 61 pour cent de la Canadienne, 21 pour cent de la Brune Suisse et 29 pour cent de la Jersey se sont reproduits, et 41 pour cent des tauraux Holstein. Toujours plus les éleveurs demandent des tauraux contrölés pour augmenter la production de lait de quelques vaches provenants de la base génétique nationale. Les nouvelles technologies qui proportionnent des modifications génétiques précises pourraient contribuer à augmenter le rapprochement de la base génétique compromettant ainsi la possibilité de soutenir la production actuelle et de répondre aux changements des marchés à long terme.

Type
Research Articles
Copyright
Copyright © Food and Agriculture Organization of the United Nations 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Cruden, D. 1949. The computation of inbreeding coefficients in closed populations. J. Hered. 40, 248251.CrossRefGoogle ScholarPubMed
Emik, L.O. & Terrill, CE. 1949. Systematic procedures for calculating inbreeding coefficients. J. Hered. 40, 5155.CrossRefGoogle ScholarPubMed
Fortin, L.de, G. 1940. Histoire de la race bovine Canadienne. La Bonne Terre, Ecole Supérieure d'Agriculture, Ste-Anne de La Pocatière, Québec, Canada, pp. 286.Google Scholar
Gowe, R.S., Robertson, A. & Latter, B.D.H. 1959. Environment and poultry breeding problems. 5. The design of poultry control strains. Poult. Sci. 38, 462471.Google Scholar
Hansen, C., Bernier, J-.G. & Shrestha, J.N.B. 2000. Broadening of the genetic base in Canadienne cattle. Proc. Fourth Global Conf. Conserv. Domest. Anim. Genet. Resour., Nepal Agricultural Research Council and Rare Breeds International, Kathmandu, Nepal, 1521–155.Google Scholar
Ibi, T., Moriya, T., Matsumoto, M., Koba, S. & Sasaki, Y. 1997. Population structure of the Japanese Brown cattle. J. Anim. Breed. Genet. 114, 4348.CrossRefGoogle Scholar
Lush, J.L. 1948. The genetics of populations. Mimeo., Iowa State University, Ames, Iowa.Google Scholar
Miglior, F. & Burnside, E.B. 1995. Inbreeding of Canadian Holstein cattle. J. Dairy Sci. 78, 11631167.CrossRefGoogle Scholar
Miglior, F., Szkotnicki, B. & Burnside, E.B. 1992. Analysis of levels of inbreeding and inbreeding depression in Jersey cattle. J. Dairy Sci. 75: 11121118.CrossRefGoogle ScholarPubMed
O’-Huigin, C. & Cunningham, E.P. 1990. Analysis of breeding structure of the Kerry breed. J. Anim. Breed. Genet. 107, 452457.CrossRefGoogle Scholar
Rutter, C.R. & Pearson, R.E. 1981. Breeding structure in artificial insemination Holsteins. J. Dairy Sci. 64 (Suppl. 1), 74 (Abstr.).Google Scholar
Takayanagi, S., Moriya, K., Nomura, T., Dohgo, T. & Sasaki, Y. 1996. Population structure of Japanese black cattle in Hyogo prefecture. Anim. Sci. Tech., Japan 67, 286290.Google Scholar
Wright, S. 1931. Evolution in Mendelian populations. Genetics 16, 97159.CrossRefGoogle ScholarPubMed
Young, C.W. 1984. Inbreeding and the gene pool. J. Dairy Sci. 67, 472477.CrossRefGoogle ScholarPubMed
Young, C.W., Bonczek, R.R. & Johnson, D.G. 1988. Inbreeding and relationship among registered Holsteins. J. Dairy Sci. 71, 1659-1666.CrossRefGoogle ScholarPubMed
Young, C.W., Tyler, W.J., Freeman, A.E., Voelker, H.H., McGilliard, L.D. & Ludwick, T.M. 1969. Inbreeding investigations with dairy cattle in the North Central region of the United States. North Central Regional Publ. 191, University of Minnesota, St. Paul, Minnesota.Google Scholar