Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-27T08:12:48.378Z Has data issue: false hasContentIssue false

Characterization of Punjab Brown chicken

Published online by Cambridge University Press:  01 August 2011

P.K. Vij
Affiliation:
National Bureau of Animal Genetic Resources, P.O.Box 129, Karnal, 132 001 Haryana, India
M.S. Tantia
Affiliation:
National Bureau of Animal Genetic Resources, P.O.Box 129, Karnal, 132 001 Haryana, India
R.K. Vijh
Affiliation:
National Bureau of Animal Genetic Resources, P.O.Box 129, Karnal, 132 001 Haryana, India
Get access

Summary

A survey was conducted in the native tract of the Punjab Brown breed of chicken to study management practices, as well as morphological, performance and egg quality parameters. The study covered the three districts of Gurdaspur district in Punjab, and Ambala and Yamunanagar districts in Haryana, and included 532 birds and 61 families. Twenty-six microsatellite loci were used to assess genetic variability. The Punjab Brown is a multi-purpose breed, yielding good quality meat and eggs. Birds are reared in the backyard system and shelter is provided only during the night in the form of small enclosures mostly made up of mud and sometimes of wood. Average flock size is 8.7. Plumage colour is mostly brown and the pattern is usually solid but is sometimes spotted or striped. Males in particular have black spots/stripes on their neck, wings and tail. The comb is red, of single type and erect in position. The average weight of cocks and hens is 2.15±0.94 and 1.57±0.04 kg respectively. Hens start laying eggs at the age of about five to six months. Clutch size is about four to five. Average egg production is around 60–80 eggs per year. Eggshell colour is mostly light brown and average egg weight is 46.0±1.91g. The average weight of shell, albumin and yolk were 5.4±0.21, 24.4±0.63 and 16.2±0.48g respectively. Yolk index, albumin index and Haugh units were 0.41±0.005, 0.10±0.006 and 82.80±0.98 respectively. A total of 218 alleles were observed. The number of alleles per locus varied from 4–14. The mean PIC value for all the loci was 0.744. Twenty-four loci were found to be neutral (P<0.05) using Ewens Watterson test of neutrality. The exact test revealed that 15 loci deviated from Hardy Weinberg Equilibrium. The population has not undergone any recent bottleneck as revealed by quantitative and graphical qualitative tests.

Resumen

Se ha llevado a cabo una encuesta en la zona originaria de la raza avícola Punjab Brown para estudiar las prácticas de manejo y los parámetros morfológicos y de rendimiento y calidad de los huevos. El estudio se realizó en tres zonas: Gurdaspur (Punjab), y Ambala y Yamunanagar (Haryana) con 532 aves y 61 familias. Se utilizaron 26 microsatélites de loci para averiguar la variabilidad genética. La raza Punjab Brown es tanto de carne como de huevos. Las aves se crían en sistema de corral y se encierran solo durante la noche en jaulas fabricadas la mayoría de las veces con barro y a veces de madera. La media de los grupos es de 8,7 animales. El plumaje es mayormente marrón y casi siempre uniforme, aunque a veces puedes tener manchas o estrías. Los machos suelen tener manchas negras en el cuello, las alas y la cola; la cresta suele ser rojiza, de forma única y en posición erecta. La media de peso de los machos y hembras resultó de 2,15±0,94 y 1,57±0,04 kg, respectivamente. Las hembras empiezan a poner huevos a los 5–6 meses de edad y el tiempo de incubación es de 4–5 días. La media de producción de huevos es de 60–80 huevos por año. El color de la cáscara suele ser marrón. La media del peso de los huevos es de 46,0±1,91 gr. El peso medio de la cáscara, albumen y yema fueron de 5,4±0,21, 24,4±0,63 y 16,2±0,48 gr, respectivamente. El índice de yema, albumen y de unidades Haugh fueron de 0,41±0,005, 0,10±0,006 y 82,80±0,98, respectivamente. Se estudiaron un total de 218 alelos. El número de alelos por locus varió entre 4 y 14. La media del valor PIC para todos los loci fue de 0,744. Se encontraron 24 loci neutrales (P<0,05) utilizando el test de neutralidad Ewens Watterson. El test reveló que 15 loci se desviaban del Hardy Weinberg Equilibrium. La pobalción no ha encontrado recientemente ningún problema, tal como demuestran la cantidad y calidad gráfica de los tests.

Type
Research Articles
Copyright
Copyright © Food and Agriculture Organization of the United Nations 0000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

List of References

Acharya, R.M. & Bhat, P.N.. 1984. Livestock and poultry genetic resources in India. Research Bulletin No 1, IVRI, Izatnagar, U.P., India.Google Scholar
Annual Report. 20012002. Central Avian Research Institute, Izatnagar U.P., India, pp. 10Google Scholar
Ayyagari, V. 2000. Conservation and management of genetic resources of poultry. The Indian Journal of Animal Genetics and Breeding, 22: 206211.Google Scholar
Bhat, P.N., Bhat, P.P.Khan, B.U.Goswami, O.B. & Singh, B.. 1981. Animal Genetic Resources in India. Publication no. 192, NDRI, Karnal, Haryana, India.Google Scholar
Chakraborty, R. & Zhong, Y.. 1994. Statistical power of an exact test of Hardy-Weinberg proportions of genotypic data at a multi-allelic locus. Human Heredity, 44: 19.Google Scholar
Cornuet, J.M. & Luikart, G.. 1996. Description and power analysis of two tests for detecting recent population bottlenecks from allele frequency data. Genetics, 144: 2001–14.CrossRefGoogle ScholarPubMed
Cornuet, J.M. & Luikart, G.. 1999. BottleneckVersion 1.2.02. A software program for detecting recent effective population size reductionsfor allele data frequencies. Available at: www.ensam.inra.fr/URLB/bottleneck/bottleneck.html.Google Scholar
Crooijmans, R.P.M.A., Groen, A.F.van Kampen, A.J.A.. van der Beek, S.van der Poel, J.J. & Groenen, M.A.M.. 1996. Microsatellite polymorphism in commercial broiler and layer lines estimated using pooled blood samples. Poultry Science, 75: 904–9.CrossRefGoogle ScholarPubMed
Guo, S.W. & Thompson, E.A.. 1992. Performing the exact test of Hardy-Weinberg proportions for multiple alleles. Biometrics, 48: 361–72.Google Scholar
Luikart, G., Allendorf, F.W.MCornuet, J. & Sherwin, W.B.. 1998. Distortion of allele frequency distributions provides a test for recent population bottlenecks. Journal of Heredity, 89: 238–47.Google Scholar
Mahapatra, S.C. & Panda, B.. 1981. Poultry Genetic Resources of India. Poultry Industry Yearbook: 5058.Google Scholar
Padhi, M.K., Ahlawat, S.P.S.. Senani, S.Saha, S.K. & Kundu, A.. 2004. Comparative evaluation of White Leghorn, Brown Nicobari and their crossbred in Andeman & Nicobar Islands. Indian Journal of Animal Sciences, 74: 557558.Google Scholar
Raymond, M. & Rousset, F.. 1995. Genepop software Version 3.4 http://wbiotned.curtin.edu.au/genepop/index.httnl.Google Scholar
Sambrook, J., Fritsch, E.F. & Maniatis, T.. 1989 Molecular Cloning: A Laboratory Manual 2nd ed, Cold spring Harbour, Cold Spring Harbor Laboratory Press, New York.Google Scholar
Singh, D.P. & Johari, D.C.. 2000. Conservation and management of poultry genetic resources of India. The Indian Journal of Animal Genetics and Breeding, 22: 195205.Google Scholar
Singh, R. & Singh, D.P.. 2000. Poultry genetic resources of India and their role in future poultry production. Chapter 26. In: Domestic Animal Biodiversity - Conservation and Sustainable Management. Sahai, R. & Vijh, R.K. (Eds). S.I. Publications, Karnal, pp. 256262.Google Scholar
Watterson, G.A. 1978. The homozygosity test of neutrality. Genetics, 88: 405–17.CrossRefGoogle ScholarPubMed
Yeh, F.C., Boyle, T.. Rongcai, Y.. Ye, Z. & Xian, J.M.. 1999. POPGENE version 3.1; www.ualberta.ca/-fyeh/fyeh.Google Scholar