Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-28T11:33:38.049Z Has data issue: false hasContentIssue false

Characterization of primary immune response in Ghanaian local, Sasso T-44 and broiler chickens to sheep red blood cell antigens

Published online by Cambridge University Press:  13 September 2013

R. Osei-Amponsah*
Affiliation:
Department of Animal Science, University of Ghana, P. O. Box LG 226, Legon, Ghana
K. Boa-Amponsem
Affiliation:
Animal Research Institute (ARI), CSIR, P. O. Box AH 20, Accra, Ghana
B.B. Kayang
Affiliation:
Department of Animal Science, University of Ghana, P. O. Box LG 226, Legon, Ghana
A. Naazie
Affiliation:
Livestock and Poultry Research Centre (LIPREC), University of Ghana, P. O. Box LG 38, Legon, Ghana
*
Correspondence to: R. Osei-Amponsah, Department of Animal Science, University of Ghana, P. O. Box LG 226, Legon, Ghana. email: [email protected]
Get access

Summary

Animals should have the capacity to adapt to changing environmental pressures to ensure sustainable productivity. The easier an animal can adapt to disease burdens without extra cost to the farmer, the more profitable the enterprise becomes. Effective immune response protects organisms against disease insults and contributes to improved productivity. Primary immune response of Ghanaian local, Sasso T-44 and broiler chickens to sheep red blood cell (SRBC) antigens was measured 5 days post-inoculation. Antibody levels were determined by haemagglutination. Local ecotypes and Sasso T-44 chicken were superior to broilers in terms of their ability to respond to antigens. Female chickens produced more antibodies in response to increased concentration of SRBC antigens while the opposite was true in the male population. Further investigation of the genetic correlation between production performance and immune response of various chicken breeds will help establish the effect of, for example, high growth rate of broilers on their immunological status.

Résumé

Les animaux devraient avoir la capacité de s'adapter aux pressions d'environnements changeants afin d'assurer une productivité durable. Plus un animal s'adapte facilement, sans coût supplémentaire pour l'éleveur, au stress causé par les maladies, plus l'élevage devient rentable. Une réponse immunitaire efficace protège les organismes face aux attaques des maladies et contribue à améliorer la productivité. La réponse immunitaire primaire de poulets locaux ghanéens, Sasso T-44 et broiler aux antigènes d'érythrocytes de mouton a été mesurée 5 jours post-inoculation. Les niveaux d'anticorps ont été déterminés par hémagglutination. Les écotypes locaux et les poulets Sasso T-44 ont été supérieurs aux poulets broiler pour ce qui est de la capacité de réponse aux antigènes. Les femelles ont produit plus d'anticorps en réponse à l'augmentation de la concentration des antigènes d'érythrocytes de mouton alors que le contraire a été observé chez la population de mâles. Une recherche plus approfondie sur la corrélation génétique entre les performances productives et la réponse immunitaire de différentes races de poulets aidera, par exemple, à déterminer l'effet d'une vitesse de croissance élevée sur l'état immunologique des poulets broiler.

Resumen

Los animales deberían tener la capacidad de adaptarse a las presiones de ambientes cambiantes para garantizar una productividad sostenible. Cuanto mayor es la facilidad del animal para adaptarse, sin coste extra para el ganadero, al estrés causado por las enfermedades, más rentable pasa a ser la ganadería. Una respuesta inmune eficaz protege a los organismos de los ataques de las enfermedades y contribuye a mejorar la productividad. La respuesta inmune primaria de pollos ghaneses locales, Sasso T-44 y broiler a antígenos de eritrocitos de oveja fue medida 5 días post-inoculación. Los niveles de los anticuerpos fueron determinados por hemaglutinación. Los ecotipos locales y los pollos Sasso T-44 fueron superiores a los broilers desde el punto de vista de la habilidad para responder a los antígenos. Las hembras produjeron más anticuerpos en respuesta a una concentración creciente de antígenos de eritrocitos de oveja mientras que se observó lo contrario en la población de machos. Una más profunda investigación de la correlación genética entre los parámetros productivos y la respuesta inmune de varias razas de pollos ayudará, por ejemplo, a determinar el efecto de una elevada velocidad de crecimiento sobre el status inmunológico de los pollos broiler.

Type
Research Article
Copyright
Copyright © Food and Agriculture Organization of the United Nations 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adriaansen-Tennekes, R., de Vries Reilingh, G., Nieuwland, M.G.B., Parmentier, H.K. & Savelkoul, H.F.J. 2009. Chicken lines divergently selected for antibody responses to sheep red blood cells show line-specific differences in sensitivity to immunomodulation by diet. Part I: Humoral parameters. Poultry Science 88: 18691978.CrossRefGoogle ScholarPubMed
Barbour, E.K., Itani, H.H., Sleiman, F.K., Saade, M.F., Abdel, H.S., Nour, A.M. & Shaib, H.A. 2012. Preliminary comparison of different immune and production components in local and imported Saanen goats reared under a sub-tropical environment. Tropical Animal Health and Production 44: 8793. DOI 10.1007/s11250-011-9892-3 CrossRefGoogle Scholar
Boa-Amponsem, K., Dunnington, E.A. & Siegel, P.B. 1997. Genetic architecture of antibody responses of chickens to sheep red blood cells. Journal of Animal Breeding and Genetics 114: 443449.Google Scholar
Boa-Amponsem, K., Larsen, C.T., Dunnington, E.A. & Siegel, P.B. 1998. Mode of inheritance of unselected traits in lines of chickens selected for high or low antibody response to sheep red blood cells. 1. Resistance to marble spleen disease virus and juvenile body weight. Poultry Science 77: 10731080.Google Scholar
Boa-Amponsem, K., Dunnington, E.A., Pierson, F.W., Larsen, C.T. & Siegel, P.B. 2000. Antibody responses to different dosages of sheep red blood cells in lines of chickens selected for high and low antibody response to sheep red blood cells. Poultry Science 79: 159162.Google Scholar
Boa-Amponsem, K., Price, S.E.H., Dunnington, E.A. & Siegel, P.B. 2001. Effect of route of inoculation on humoral immune response of white leghorn chickens selected for high or low antibody response to sheep red blood cells. Poultry Science 80: 10731078.CrossRefGoogle ScholarPubMed
Bovenhuis, H., Bralten, H., Nieuwland, M.G.B. & Parmentier, H.K. 2002. Genetic parameters for antibody response of chickens to sheep red blood cells based on a selection experiment. Poultry Science 81: 309315.CrossRefGoogle ScholarPubMed
Chatterjee, R.N., Sharma, R.P., Reddy, M.R., Niranja, M. & Reddy, B.L.N. 2007. Growth, body conformation and immuneresponsiveness in two Indian native chicken breeds. Livestock Research for Rural Development Vol. 19 Article #10Google Scholar
Dorshorst, B.J., Siegel, P.B. & Ashwell, C.M. 2011. Genomic regions associated with antibody response to sheep red blood cells in the chicken. Animal Genetics 42: 300308.Google Scholar
Dunnington, E.A., Martin, A., Brilles, W.E., Brilles, R.W. & Siegel, P.B. 1986. Resistance to Marek's disease in chickens selected for high and low antibody responses to lower case “s” sheep red blood cells. Archiv Fuer Gefluegelkunde 50: 94.Google Scholar
El-Safty, S.A., Ali, U.M. & Fathi, M.M. 2006. Immunological parameters and laying performance of naked neck and normally feathered genotypes of chicken under winter conditions of Egypt. International Journal of Poultry Science 5(8): 780785.Google Scholar
FAO. 2007. Global Plan of Action for Animal Genetic Resources and the Interlaken Declaration, adopted by the International Technical Conference on Animal Genetic Resources for Food and Agriculture. Interlaken. FAO, Rome (available at www.fao.org/docrep/010/a1404e/a1404e00.htm).Google Scholar
Gavora, J.S., Spencer, J.L., Okada, I. & Grunder, A.A. 1990. Correlations of genetic resistance of chickens to Marek's disease viruses with vaccination protection and in vivo response to phytohemaglutinin. Genetics Selection, Evolution 22: 457.Google Scholar
Geng, T. 2007. Genomics-based analysis of antibody response to sheep red blood cells in chickens. Virginia, USA, Virginia Polytechnic Institute and State University (Ph. D. thesis).Google Scholar
Gross, W.B., Siegel, P.B., Hall, R.W., Domermuth, C.H. & DuBoise, T. 1980. Production and persistence of antibodies in chickens to sheep erythrocytes. 2. Resistance to infectious diseases. Poultry Science 59: 205210.Google Scholar
Hangalapura, B.N., Nieuwland, M.G.B., de Vries, G.R., Heetkamp, M.J.W., van den Brand, H., Kemp, B. & Parmeentier, H.K. 2003. Effects of cold stress on immune responses and body weight of chicken lines divergently selected for antibody responses to sheep red blood cells. Poultry Science 82: 16921700.CrossRefGoogle ScholarPubMed
Kuehn, L.A., Price, S.E., Honaker, C.F. & Siegel, P.B. 2006. Antibody response of chickens to sheep red blood cells: crosses among divergently selected lines and relaxed sublines. Poultry Science 85: 13381341.CrossRefGoogle ScholarPubMed
Lamont, S.J., Pinard-van der Laan, M.-H., Cahanner, A., van der Poe, J.J. & Parmentier, H.K. 2003. Selection for disease resistance. Direct selection on the immune response. In Muir, M.M. & Aggrey, S.E. (eds) Poultry Genetics, Breeding and Biotechnology. CABI Publishing, Cambridge, MA. pp. 399418.CrossRefGoogle Scholar
Li, Z., Nestor, K.E., Saif, Y.M. & Anderson, J.W. 2000. Antibody responses to sheep red blood cell and Brucella abortus antigens in a Turkey Llne selected for selected for increased body weight and its randombred control. Poultry Science 79: 804809.Google Scholar
Moula, N., Antoine-Moussiaux, N., Decuypere, E., Farnir, F., Mertens, K., De Baerdemaeker, J. & Leroy, P. 2009. Comparative study of egg quality traits in two Belgian local breeds and two commercial lines of chickens. Archiv Fuer Geflugelkunde 74(3): 164171.Google Scholar
Osei-Amponsah, R., Kayang, B.B. & Naazie, A. 2012. Age, genotype and sex effects on growth performance of local chickens kept under improved management in Ghana. Tropical Animal Health and Production 44: 2934.Google Scholar
Payne, R.W., Harding, S.A., Murray, D.A., Soutar, D.M., Baird, D.B., Welham, S.J., Kane, A.F., Gilmour, A.R., Thompson, R., Webster, R. & Wilson, T.G. 2007. GenStat Release 10 Reference Manual, Part 2 Directives. VSN International, Hemel Hempstead, UK.Google Scholar
Pinard, M. H-., van Arendonk, J.A.M., Nieuwland, M.G.B. & van der Zjipp, A.J. 1992. Divergent selection for immune responsiveness in chickens: estimation of realised heritability with an animal model. Journal of Animal Science 70: 29862993.Google Scholar
Pose, A.G., Gómez, J.N., Alina Venereo Sánchez, A.V., Redondo, A.V., Elsa Rodríguez, E.R., Seguí, R.M., Ramos, E.M.G., Moltó, M.P.R., Elaine Santana Rodríguez, E.S., Cordero, L.R., Mallón, A.R. & Nordelo, C.B. 2011. Subunit influenza vaccine candidate based on CD154 fused to HAH5 increases the antibody titers and cellular immune response in chickens. Veterinary Microbiology 152: 328337.Google Scholar
Rajkumar, U., Reddy, M.R., Rama Rao, S.V., Radhika, K. & Shanmugam, M. 2011. Evaluation of growth, carcass, immune response and stress parameters in naked neck chicken and their normal siblings under tropical winter and summer temperatures. Asian–Australian Journal of Animal Science 24(4): 509516.Google Scholar
Schulten, E.S., Yates, L.M. & Taylor, R.L. 2007. Antibody response against sheep red cells in lines congenic for major histocompability (B) complex recombinants. International Journal of Poultry Science 6(10): 723738.Google Scholar
Siwek, M. 2005. Different genetic bases of immune responses in laying hens. Wageningen, The Netherlands, Animal Breeding and Genetics Group, Wageningen Institute of Animal Sciences (Ph.D. thesis).Google Scholar
Syrjanen, K.J. & Naukkarinen, A. 1982. Effects of per anum immunization with sheep red blood cells on the structure of the post-capillary venules in the T-cell area of chicken cloacal bursa. Immunology 45: 721726.Google Scholar
Van der Zijpp, A.J. & Leenstra, F.R. 1980. Genetic analysis of the humoral immune response of white leghorn chicks. Poultry Science 59: 13631369.Google Scholar
Van der Zijp, A.J. & Nieuwland, M.G.B. 1986. Immunological characterization of lines selected for high and low antibody production. In Proceedings of the 7th European Poultry Conference, Paris, France 1:211215.Google Scholar