Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-18T23:14:17.642Z Has data issue: false hasContentIssue false

Analyse de données de ségrégations italiennes pour la livrée des bovins

Published online by Cambridge University Press:  01 August 2011

C. Renieri
Affiliation:
Département de Sciences vétérinaires, Université de Camerino, Via Circonvallazione 93, 62024 Matelica, Italie
J.J. Lauvergne
Affiliation:
COGOVICA/COGNOSAG, Bâtiment 211, CRJ/INRA, 78 352 Jouy-en-Josas, France
Get access

Résumé

Des ségrégations de la livrée ont été analysées sur des données de F1 et de back-cross sur les pères de races à viande phæomélaniques (Charolaise et Limousine) et phæomélaniques à extrémités eumélaniques dites PEE (Piémontaise, Chianine, Marchienne et Romagnole) accouplés à des femelles eumélaniques noir (Holstein Frisonne Italienne).

Les ségrégations sont interprétées en termes d'allèles au locus Extension E avec les quatre allèles ED,Er ,E et El, au locus Dilution Charolais DC avec les allèles DCD et DC+, au locus Albinos C avec les allèles C+ et Cch et au locus Spotting S avec les allèles S+ et Ss

Parfois il faut faire appel à des pénétrance incomplètes.

Summary

Phenotypic segregation of coat colour of cattle has been analyzed in F1 and paternal back-crosses between French and Italian Limousin, Charolais, Piemontese, Chianina, Marchigiana and Romagnola meat breeds on one hand and Italian Holstein Frisian milk breed on the other hand. The biallelism at the Extension locus, EDEr can explain the results of pheomelanic x eumelanic black crossing being Charolais and Limousin males ErEr and the Italian Holstein Friesian females EDED. Both parental phenotypes and one intermediate have been observed in F1 and back-crosses; the incomplete penetrance explains the segregation. The triallelism at the Extension locus, ED, E and E1 can explain the pheomelanic with eumelanic extremities x eumelanic black crossbreeding. Both parental phenotypes and several intermediates already described (inverted mule stripe, badger face and black and tan) or not described on cattle have been observed on F1 and back-cross.

The incomplete penetrance can explain the phenotypic variability of segregation. The biallelism at the Dilution Charolais locus, DC: DCD and DC+ explains the results of Charolais (white) x Italian Holstein Friesian (normal) cross for Charolais dilution. Incomplete penetrance and intermediate expressivity can explain the segregation, among the F1, of both normal and diluted no white phenotypes. The allelism at the Albino locus, C: C+ and Cch explains the results of Piemontese, Chianina, Marchigiana and Romagnola (chinchilla alteration) x Italian Holstein Friesian (normal) cross for the chinchilla alteration, readable on pheomelanoc basis. Incomplete penetrance can explain the segregation, among the F1 and the back-cross, of both normal and chinchilla phenotypes.

The allelism at the Spotting locus, S: S+ and Ss explains the results of the meat breeds (normal) x Italian Holstein Friesian (irregular spotting) cross for the irregular spotting. Incomplete penetrance can explain the segregation, among the F1 and the back-cross, of both normal and spotted phenotypes.

Type
Research Articles
Copyright
Copyright © Food and Agriculture Organization of the United Nations 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Références

Agricoltura e Ricerca. 1985.: Introduzione. Agric. Ric., Roma, 45/45, 713.Google Scholar
Babo, D. 1998. Races bovines françaises. Editions France Agricole, Paris.Google Scholar
Charlier, C, Denys, B., Belanche, J.I., Coppieters, W., Grobet, L., Mni, M., Womack, J., Hanset, R. & George, M.. 1996. Microsatellite mapping of the bovine roan locus: a major determinant of white heifer disease. Mammalian Genome, 7, 138142.CrossRefGoogle Scholar
Crepaldi, P., Marilli, M., Gorni, D., Meggiolaro, D., Cicogna, M., Renieri, C.. 2003. Preliminary study on MC1R polymorphisms in some cattle breeds raised in Italy. Proc. ASPA, Bologna, submitted.CrossRefGoogle Scholar
Foreman, M.E., Lamoreux, M.L., Kwon, B. & Womack, J.E.. 1994. Mapping the bovine albino locus. J. Hered., 4, 318320.CrossRefGoogle Scholar
Joerg, H., Fries, H.R., Meijerink, E. & Stranzinger, G.F.. 1996. Red coat color in Holstein cattle is associated with a deletion in MSHR gene. Mamm. Genome 7, 317318.CrossRefGoogle ScholarPubMed
Julien, R. 1999. Utilisation de marqueurs génétiques pour la traçabilité, Séminaire du Dpt de Génétique animale de I'INRA, Cap d'Agde, 27 sept-1er oct. 1999, Département de Génétique animale de I'INRA, Toulouse, 1999, pp 279282.Google Scholar
Klungland, H. & Vage, D.. 1999. Presence of the dominant extention allele ED in red and mosaic cattle. Pig. Cell Res., 12, 391393.CrossRefGoogle Scholar
Klungland, H., Vage, D., Gomez-Raya, L. & Adalsteinsson, S.. 1995. The role of melanocyte-stimulating hormone (MSH) receptor in bovine coat color determination. Mammal. Genome, 6, 636639.CrossRefGoogle ScholarPubMed
Lauvergne, J.J. 1966 a. Contribution à l’étude de la couleur du pelage chez les Bovins domestiques, Thèse 3ème cycle Fac. Sci. Univ. Paris.Google Scholar
Lauvergne, J.J. 1966 b. Génétique de la couleur du pelage des Bovins domestiques (Bos taurus L.). Bibliogr. Genetica 20, 168.Google Scholar
Lauvergne, J.J. 1983. Les robes du Boeuf domestique (Bos taurus L.) et leur formule génétique. Ethnozootechnie 32, 7090.Google Scholar
Lauvergne, J.J., Renieri, C., Silvestrelli, M. & Valfrè, F.. 1989. Genetic analysis of cattle coat color from crossbreds with Swiss Brown. J. Anim. Breed. Genet, 106, 389397.CrossRefGoogle Scholar
Lauvergne, J.J., Dolling, C.H.S., Rae, A.L., Renieri, C., Sponenberg, D.P. & Denis, B.. 2000. Coat Colour Loci (Category 1). In: Millar, P., Lauvergne, J.J., Dolling, C. (Eds), Mendelian Inheritance in cattle 2000, EAAP Publ. No 101, Wageningen Pers, Wageningen, pp. 37105.Google Scholar
Misuraca, G., Prota, G. & Lauvergne, J.J.. 1974. Nature des pigments mélaniques du pelage des Bovins domestiques (Bos taurus L.). Ann. génét. sél. anim. 6, 399 404.CrossRefGoogle Scholar
Olson, T.A. 1999. Genetics of colour variation. In: Fries, R., Ruvinsky, A. (Eds), The Genetics of Cattle, CAB International, Oxford, U.K., pp 3353.Google Scholar
Olson, T.A. & Willham, R.L.. 1982. Inheritance of Coat Colour in Cattle: a review. Iowa Agr. Home. Ec. Exp. Sta. Res. Bull. 595, Ames, Iowa, pp. 149176.Google Scholar
Quittet, E. 1946. :Les races bovines françaises. Ministère de l'Agriculture, Paris,.Google Scholar
Reinsch, N., Thomsen, H., Xu, N., Looft, C., Kalm, E., Brockmann, G.A., Grupe, S., Kühn, C., Schwerin, M., Leyhe, B., Hiendleder, S., Erhardt, G., Medjugorac, I., Russ, I., Brenig, Föster B., Blümel, J.M., Reents, R., Averdunk, G. & Duda, J.. 1999. Mapping loci for the degree of spotting, color dilution, and circumocular pigmentation in the ADR granddaughter-design, 50th Ann. Meet. EAAP, pp. 116.Google Scholar
Reinsch, N., Thomsen, H., Xu, N., Brink, M., Looft, B, Kalm, E., Brockmann, G.A., Grupe, S., Kühn, C., Schwerin, M., Leyhe, B., Hiendleder, S., Erhardt, G., Medjugorac, I., Russ, I., Föster, M., Reents, R., Averdunk, G.. 1999. A QTL for the Degree of Spotting in Cattle Shows Synteny with the KIT Locus on Chromosome 6. J. Hered, 90, 629634.CrossRefGoogle ScholarPubMed
Renieri, C, Lauvergne, J.J. & Valfrè, F.. 1984. La formula genetica della colorazione delle razze bovine a standard italiane [Genetic formula of standardized Italian cattle breeds]. Riv. Zoot. Vet. 12, 310 317.Google Scholar
Renieri, C, Olson, T.A., Sponenberg, D.P.. 1990. Present state of genetic nomenclature of coat colour loci in cattle. IV World Congr. Genet. appl. Livestock Produc, Genetic nomenclature of cattle, 14, pp. 529532.Google Scholar
Renieri, C, Martino, G., Lauvergne, J.J., Trabalza Marinucci, M.. 1988. Quantitative analysis of eumelanins and phaeomelanins in hair of cattle with different pigmentation genotypes. In: XX Int. Conf. Anim. Blood Groups Biochem. Polymorphisms, Turin, p. 76 (abstract).Google Scholar
Renieri, C., Lauvergne, J.J.. Gigli, S. & Valfrè, F.. 1989. Analisi genetica della colorazione de bovini. Dati di incroccio e backcross tra le razze Bruna, Limousine, Chianina e Piemontese. Ann. Ist. Speriment. Zootecnia, 3, 107124.Google Scholar
Renieri, C., Ceccarelli, P., Gargiulo, A.M., Lauvergne, J.J. & Monacelli, G.. 1993. Chemical and Electron Microscopic Studies of Cattle (Bos taurus) with Four Types of Phenotypic Pigmentation. Pigment Cell Res. 6, 165170.CrossRefGoogle ScholarPubMed
Rouzaud, F., Oulmouden, A., Petit, J.M., Levéziel, H. & Julien, R.. 1996. Gènes de la coloration des races bovines allaitantes françaises. Perspectives d'application à l'identification des produits, Rencontres Rech. Ruminants 3, 317320.Google Scholar
Rouzaud, F., Martin, J., Gallet, P.F., Delourme, D., Goulemot-Leger, V., Amigues, Y., Ménissier, F., Levéziel, H., Julien, R. & Oulmouden, A.. 2000. A first genotyping assay of French cattle breeds based on a new allele of the extention gene encoding the melanocortin-1 receptor (Mc1r), Genet. Sel. Evol, 32, 511520.CrossRefGoogle Scholar
Searle, A.G. 1968. Comparative Genetics of Coat Colour in Mammals, Logos Press/Academic Press, London.Google Scholar
Silvers, W.K. 1979. The Coat Colors of Mice, Springer-Verlag, New York, 1979.CrossRefGoogle Scholar