Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-07T18:20:40.290Z Has data issue: false hasContentIssue false

Studies on morphometrical traits of Boran bulls reared on two feedlots in Southern Ethiopia

Published online by Cambridge University Press:  01 May 2014

Sandip Banerjee*
Affiliation:
School of Animal and Range Sciences, Hawassa University, P.O Box 05, Hawassa, SNNPRS, Ethiopia
Mohamed Beyan Ahmed
Affiliation:
School of Animal and Range Sciences, Hawassa University, P.O Box 05, Hawassa, SNNPRS, Ethiopia
Girma Tefere
Affiliation:
Dilla A.T.V.E.T College, Dilla, SNNPRS, Ethiopia
*
Correspondence to: Sandip Banerjee, School of Animal and Range Sciences, Hawassa University, PO Box 05, Hawassa, SNNPRS, Ethiopia. email: [email protected] and [email protected]; tel.: +251916011747
Get access

Summary

The study was conducted on Boran bulls from three age groups (2, 3 and 4 years) reared at two different locations in Southern Ethiopia. The study was conducted to assess the different morphometrical measurements in Boran bulls, to estimate live weight of the bulls using step-down regression equations and also to calculate structural indices for assessment of type for which the breed was developed and thus assist in the selection of the bulls. The feedlots were situated in Meki district and varied both in location and the type of management, with the second feedlot being better managed than the first. The morphometric traits included in the study were height at withers (HW), height at rump (RH), body length (BL), heart girth (HG), head width (WFH), neck circumference (NC), neck length (NL), chest width (CW), rump length (RL), hip width (WH) and flank width (FW) and the body weight (BW). The results indicated that while the skeletal measurements HW, RH and BL did not vary (P < 0.05) between bulls of a particular age across the two feedlots, the other parameters were higher among the bulls reared in the feed lot with wind breaks and situated away from lake Ziway. The results of the step-down regression equations indicated that BW could be assessed using various morphometrical measurements viz. NL, NC, RL, WH and HG. The parameters included varied both across the age groups and locations. The results related to the structural indices indicated that the Boran bulls had posterior alignment and had higher CW than HW.

Résumé

L'étude a été menée sur des taureaux Boran de trois groupes d'âge (2, 3 et 4 ans) élevés à deux endroits différents dans sud de l'Ethiopie. Les parcs d'engraissement étaient situées dans le district de Meki et varié tant dans l'espace et le type de gestion, avec le deuxième parc d'engraissement est mieux géré que la première. Les traits morphométriques inclus dans l'étude étaient la hauteur au garrot (HW), la hauteur à la croupe (RH), la longueur du corps (BL), la circonférence de coeur (HG), la largeur de la tête (FMH), circonférence du cou (NC), la longueur du cou (NL ), la largeur de la poitrine (CW), la longueur croupe (RL), la largeur des hanches (WH) et la largeur de flanc (FW) et le poids corporel de (BW). Les résultats indiquent que, bien que la mesure squelettiques HW, RH et BL ne varient pas (P < 0.05) entre les taureaux d'un âge donné dans les deux parcs d'engraissement, les autres paramètres étaient plus élevés chez les taureaux élevés dans le parc d'engraissement avec des brise-vent et situés loin du lac Ziway. Les résultats de l'étape vers le bas équations de régression ont indiqué que BW peut être évaluée en utilisant différentes mesures morphométriques à savoir. NL, NC, RL, WH et HG. Les paramètres inclus variée à la fois à travers les groupes d'âge et les lieux. Les résultats liés à des indices structurels indiqué que les taureaux Boran eu alignement postérieur et avait CW supérieur à HW.

Resumen

Este estudio fue llevado a cabo con toros Boran, de tres grupos de edad (2, 3 y 4 años), criados en dos lugares distintos del Sur de Etiopía. El estudio se realizó con el fin de medir diferentes parámetros morfométricos en toros Boran, de estimar el peso vivo de los toros con ecuaciones obtenidas por el método de regresión por eliminación de variables (análisis step-down) y con el fin también de calcular índices estructurales para la determinación del tipo de animal pretendido cuando se desarrolló la raza y, así, contribuir a la selección de los toros. Los corrales de engorde estuvieron ubicados en el distrito de Meki y difirieron tanto en el emplazamiento como en el tipo de manejo, siendo el segundo cebadero mejor gestionado que el primero. Los parámetros morfométricos incluidos en el estudio fueron la altura a la cruz (AC), la altura a la grupa (AG), la longitud corporal (LC), la circunferencia torácica (CT), la anchura de la cabeza (ACz), la circunferencia del cuello (CCu), la longitud del cuello (LCu), la anchura del pecho (AP), la longitud de la grupa (LG), la anchura de la cadera (ACd), la anchura de los flancos (AF) y el peso corporal (PC). Los resultados indicaron que, si bien las medidas esqueléticas AC, AG y LC no variaron significativamente, para una misma edad, entre los toros de los dos cebaderos, los valores de los otros parámetros fueron más elevados en los toros criados en el corral de engorde con cortinas cortaviento, situado a gran distancia del lago Ziway. Los resultados obtenidos con las ecuaciones de regresión señalaron que el peso corporal podía ser estimado usando algunas medidas morfométricas, en concreto LCu, CCu, LG, ACd y CT. Los parámetros considerados se vieron afectados tanto por el grupo de edad como por la ubicación del cebadero. En cuanto a los índices estructurales, los resultados mostraron que los toros Boran presentaban alineamiento posterior y que tuvieron mayor AP que AC.

Type
Research Article
Copyright
Copyright © Food and Agriculture Organization of the United Nations 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aamir, H.M., Babiker, S.A., Youssif, G.M. & Hassan, Y.A. 2010. Phenotypic characterization of Sudanese Kenana cattle. Res. J. Anim. Vet. Sci., 5: 4347.Google Scholar
Abdelhadi, O.M.A., Babiker, S.A. 2009. Prediction of zebu cattle live weight using live animal measurements. Livestock Research for Rural Development. Volume 21 Article 133. Retrived August 2, 2013 from http://www.lrrd.org/lrrd21/8abde21133.htm Google Scholar
Abdelhadi, O.M.A., Babiker, S.A. & Kijora, C. 2011. Estimation of zebu cattle carcass weight using body measurements. Livestock Res. Rural Dev., 23: Article #12. Retrieved August 23, 2013 (available at http://www.lrrd.org/lrrd23/1/abde23012.htm), Addis Ababa, Ethiopia.Google Scholar
Abdulmojeed, Y., Kingsley Omogiade, I., Hadiza Salihu, H., Matthew, W. & Samuel, A. 2010. Multivariate analysis of phenotypic differentiation in Bunaji and Sokoto Gudali cattle. Acta Argiculturae Slovenica. 96(2): 7580.Google Scholar
Afolayan, R.A., Adeyinka, I.A. & Lakpini, C.A.M. 2006. The estimation of live weight from body measurements in Yankasa sheep. Czech J. Anim. Sci., 51: 343348.Google Scholar
Alberro, M. & Haile-Mariam, S. 1982. The indigenous cattle of Ethiopia. Part I. FAO World Anim. Rev., 41: 210.Google Scholar
Alderson, G.L.H. 1999. The development of a system of linear measurements to provide an assessment of type and function of beef cattle. Anim. Genet. Resour. Inf. FAO, 25: 4555.Google Scholar
Bagui, N.J.G. & Valdez, C.A. 2007. Live weight estimation of locally raised adult purebred Brahman cattle using external body measurements. Philip. J. Vet. Med., 44: 3642.Google Scholar
Bonsma, J. 1980. Livestock production: a global approach. Cape Town, RSA, Tafelberg Pub. Ltd., p. 2659.Google Scholar
Bosman, D.J. 1999. Selecting cattle for functional efficiency. In Scholtz, M.M., Berg, L. & Bosman, D.J., eds. Beef breeding in South Africa. Commemorating 40 years of beef cattle production testing, 1959–1999, pp. 1324. Irene, Agriculture Research Council Animal Improvement Inst.Google Scholar
Bozkurt, Y. 2006. Prediction of body weight from body size measurements in Brown Swiss feedlot cattle fed under small-scale farming conditions. J. Appl. Anim. Res., 29: 2932.CrossRefGoogle Scholar
Branton, C. & Salisbury, G.W. 1946. The estimation of the live weight of bulls from heart girth. J. Dairy Sci., 29: 141143.Google Scholar
Brito, A.F.C., Silva, A.D.E.F., Barbosa, R.T. & Kastilec, J.P. 2004. Testicular thermoregulation in Bos indicus bulls: relationship with scrotal, testicular vascular cone and testicular morphology and its effect on semen quality and sperm production. Theriogenology, 61: 511528.CrossRefGoogle ScholarPubMed
CSA. 2012. Central Statistics Agency of Ethiopia. Report on Livestock and Livestock Characteristics, Agricultural Sample Survey 2010–11(2003 E.C). Statistical Bulletin No.532, Vol. II. March 2012. Addis Ababa Ethiopia.Google Scholar
Cyprian, A., Gerald Nwachi, A.K.P.A., Pano, B.P., Finangwai Hosea Istifanus & Danbab, A.B. 2012. Comparative evaluation of linear Udder and body conformation traits of Bunaji and Friesian X Bunaji cows. World J. Life Sci. Med. Res., 2(4): 134140.Google Scholar
El Khidir, O.A. 1980. A note on prediction of live weight of growing Kenana heifers from linear body measurements. Sudan J. Vet. Sci. Anim. Husbandry, 21(2): 102104.Google Scholar
ESPSLMMP. 2010. Focus on Ethiopia's Meat and Live Animal Export, Ethiopia Sanitary and Phytosanitary Standards and Livestock & Meat Marketing Program. Trade Bulletin Issue 1, Addis Ababa.Google Scholar
ESPSLMMP. 2011. Focus on Ethiopia's Meat and Live Animal Export, Ethiopia Sanitary and Phytosanitary Standards and Livestock & Meat Marketing Program. Trade Bulletin 5, July.Google Scholar
Fasil, G. 2006. On-farm phenotypic characterization of cattle genetic resources and their production systems in Awi, East and West Gojjam zones of Amhara region. M.Sc. thesis, submitted to School of Graduate Studies Haramaya University Ethiopia.Google Scholar
Felleke, G. & Geda, G. 2001. The Ethiopian dairy development policy. In: A draft policy document, Addis Ababa, Ethiopia: Ministry of Agriculture/AFRDRD/AFRDT. Food and Agriculture Organization/SSF.Google Scholar
Fouire, P.J., Neser, F.W.C., Oliver, J.J. & Van der Westhizen, C. 2002. Relationship between production performance, visual appraisal and body measurements of young Dorper rams. South African J. Anim. Sci., 32: 256262.Google Scholar
Gatesy, J. & Arctander, P. 2000. Hidden morphological support for the phylogenetic placement of Pseudoryx ngetinhensis with bovine bovids: a combined analysis of gross anatomical evidence and DNA sequences from five genes. Syst. Biol., 49(3): 515538.Google Scholar
Getinet, M., Ayalew, W. & Hegde, B.P. 2009. Growth and reproductive performance of Ogaden cattle at Haramaya University, Ethiopia. Ethiopian J. Anim. Prod., 9(1): 1338.Google Scholar
Gilbert, H.R. & Gregory, P.W. 1952. Some features of growth and development of Hereford cattle. J. Anim. Sci., 11: 316.Google Scholar
Gilbert, R.P., Bailey, D.R.C. & Shannon, N.H. 1993. Linear body measurements of cattle before and after 20 years of selection for postweaning gain when fed two different diets. J. Anim. Sci., 71: 17121720.CrossRefGoogle ScholarPubMed
Goe, M.R., Alldredge, J.R. & Light, D. 2001. Use of heart girth to predict body weight of working oxen in Ethiopian highlands. Livestock Prod. Sci., 69: 187195.Google Scholar
Hafez, E.S.E. 1968. Principles of animal adaptation. In Hafez, E.S.E., ed. Adaptation of domestic animals, pp. 315. Philadelphia, Lea and Fabiger.Google Scholar
Hammond, J. Jr., Mason, I.L. & Robinson, T.J. 1971. Hammond's farm animals, 4th edition. London, Edward Arnold, p. 283.Google Scholar
Heinrichs, A.J., Rogers, G.W. & Cooper, J.B. 1992. Predicting body weight and wither height in Holstein heifers using body measurements. J. Dairy Sci., 75: 35763581.Google Scholar
Hoffmann, I. 2010. Livestock biodiversity. Rev. Sci. Tech. Off. Int. Epiz., 29(1): 7386.Google Scholar
Hunters, R.A. & Buck, N. 1992. Nutritional and climatic limits of beef production in the tropics. In Jarrige, R. & Beranger, C., eds. World animal science, C5. Beef cattle production, pp. 379387. The Netherlands, Elsevier Science.Google Scholar
Hutcheson, D. 2006. Feeding to produce export quality Ethiopian beef requirements and recommendations. Ethiopia Sanitary and Phyto sanitary standards and livestock and meat marketing program (SPS-LMM), p. 18.Google Scholar
Kamalzadeh, A., Koops, W.J. & van Bruchem, J. 1998. Feed quality restriction and compensatory growth in growing sheep: modeling changes in body dimensions. Livestock Prod. Sci., 53: 5767.Google Scholar
Kayastha, R.B., Zaman, G., Goswami, R.N. & Haque, A. 2011. Physical and morphometric characterization of indigenous cattle of Assam. Open Vet. J., 1: 79.Google Scholar
Khalafalla, I.E.E., Atta, M., Eltahir, I.E. & Mohammed, A.M. 2011. Effect of body weight on slaughtering performance and carcass measurements of Sudan Baggara bulls. Livestock Res. Rural Dev., 23: Article #47. Retrieved August 23, 2013 (available at http://www.lrrd.org/lrrd23/3/khal23047.htm).Google Scholar
Khogali, A.M. 1999. The effect of different dietary levels on performance, carcass characteristics and meat quality of the Baggara cattle. (Ph.D. thesis), University of Khartoum, Sudan.Google Scholar
Kugonza, D.R., Nabasirye, M., Mpairwe, D., Hanotte, O. & Okeyo, A.M. 2011. Productivity and morphology of Ankole cattle in three livestock production systems in Uganda. Anim. Genet. Resour. Inf., 48: 1322.CrossRefGoogle Scholar
Little, P.D., Smith, K., Cellarius, B.A., Coppock, C.B. & Barrett, C. 2001. Avoiding disaster: diversification and risk management among East African herders. Dev. Change, 32(3): 401433.CrossRefGoogle Scholar
Livestock Marketing Authority (LMA). 2001. Study on causes of cross-border illegal trades in South, Southwest and Eastern Ethiopia. Addis Ababa, Ethiopia, Market Research and Promotion Department.Google Scholar
Macjowski, J. & Zieba, J. 1982. Genetics and animal breeding part-A. Biological and genetic foundations of animal breeding. Warszawa, Elisever Scientific PWN. Polish Scientific Publishers, pp. 3037.Google Scholar
Manzi, M., Junga, J.O., Ebong, C., & Mosi, R. 2012. Factors affecting pre and post-weaning growth of six cattle breed groups at Songa Research station in Rwanda. Livestock Research for Rural Development. Volume 24, Article #68. Retrieved March 22, 2014, from http://www.lrrd.org/lrrd24/4/manz24068.htm.Google Scholar
Mason, I.L. & Maule, J.P. 1960. The indigenous livestock of Eastern and Northern Africa technical communication 14. Farnham Royal, UK, CAB (Commonwealth Agricultural Bureaux).Google Scholar
Mc Donald, P., Edwards, R.A., Greenhalgh, J.F.D. & Morgan, C.A. 2002. Animal nutrition, 6th edition. Edinburg, UK, Pearson Edu Ltd, pp. 58, 352–370.Google Scholar
Milla, A.P., Mahagoub, M.M.M. & Bushara, I. 2012. Estimation of live body weight from heart girth, body length and condition score in Nilotic cattle – Southern Sudan. J. Anim. Sci. Adv., 2(5): 453457.Google Scholar
Msangi, B.S.J., Bryant, M.J., Kavana, Y., Msanga, N. & Kizima, J.B. 1999. Body measurements as a management tool for crossbred dairy cattle at a smallholder farm Ksition. Proc. Tanzania Soc. Anim. Sci., 26: 168175.Google Scholar
Mullick, D.N. 1950. The estimation of the weight of cattle and buffalo from heart girth measurements. Indian J. Anim. Nutr., 3: 5258.Google Scholar
Mwacharo, J.M., Okeyo, A.M., Kamande, G.K. & Rege, J.E.O. 2006. The small East African shorthorn zebu cows in Kenya. Linear body measurements. Trop. Anim. Health Prod., 38: 6574.Google Scholar
Mwambene, P.L., Katule, A.M., Chenyambuga, S.W. & Mwakilembe, P.A.A. 2012. Fipa cattle in the southwestern highlands of Tanzania: morphometric and physical characteristics. Anim. Genet. Resour. Inf., 51: 1529.Google Scholar
Nakachew, M. 2009. Characterization of Abigar (Nuer) cattle breed at its production environment in Gambella Regional State, Ethiopia. A thesis Submitted to the School of Graduate Studies Hawassa University, p. 159.Google Scholar
NEPAD–CAADP (New Partnership for Africa's Development – Comprehensive Africa Agriculture Development Programme). 2005. Ethiopia: investment Project Profile “Live Animal and Meat Export” – Preliminary Options Outline, p. 3.Google Scholar
Oladimeji, B.S., Osinowo, O.A., Alawa, J.P. & Hambolu, J.O. 1996. Estimation of average values for pulse rate, respiratory rate and rectal temperature and development of a heat stress index for adult Yankassa sheep. Bull. Anim. Health Prod., 44: 105107.Google Scholar
Otuma, M.O. 2004. Influence of breeding designs and seasonal changes on growth of Nigerian goats and their crosses. Trop. J. Anim. Sci., 7(2): 8793.Google Scholar
Ozkaya, S. & Bozkurt, Y. 2009. The accuracy of prediction of body weight from body measurements in beef cattle. Arch. Tierz, 52: 371377.Google Scholar
Pagot, J. 1992. Animal production in the tropics and sub-tropics. London, UK, McMillan Press Ltd., pp. 186, 232–252.Google Scholar
Phanchung & Roden, J.A. 1996. Characterisation of the Siri breed and the Mithun cross Siri in Bhutan. Anim. Genet. Resour. Inf., 20: 2734.Google Scholar
Pianka, E.R. 2000. Evolutionary ecology, 6th edition. San Francisco, Addison-Wesley-Longman.Google Scholar
Rajendran, R., Raja, T.V., Thiruvenkadan, A.K., Mahalinga Nainar, A. & Thangaraju, P. 2008. Morphobiometrical characteristics and management of Umblachery cattle from coastal region of Tamilnadu, India. Livestock Res. Rural Dev., 20: Article #40. Retrieved August 23, 2013 (available at http://www.lrrd.org/lrrd20/3/raje20040.htm).Google Scholar
Rohrer, F. 1921. “Der Index der Körperfülle als Maß des Ernährungszustandes” [The index of corpulence as measure of nutritional state]. Münchener medizinische Wochenschrift (in German), 68: 580582.Google Scholar
Rothouge, A. 2000. New Ecological perceptions of arid rangelands. Agricola, 11: 4956.Google Scholar
Salako, A.E. 2006. Application of morphological indices in the assessment of type and function in sheep. Int. J. Morphol., 24(1): 1318.Google Scholar
Shackelford, S.D., Koohmaraie, M. & Wheeler, T.L. 1995. Effects of slaughter age on meat tenderness and USDA carcass maturity scores of beef females. J. Anim. Sci., 73: 33043309.Google Scholar
Shiferaw, G. 2006. In-situ phenotypic Characterization of Kereyu cattle type in Fentale district of Oromya region. M.Sc. thesis submitted to School of Graduate Studies Haramaya University Ethiopia.Google Scholar
Slippers, S.C., Letty, B.A. & De Villerrs, J.F. 2000. Prediction of body weight of Nguni goats. S. Afr. J. Anim. Sci., 30 (Suppl. 1): 127128.Google Scholar
Solomon, D. 2001. Cattle population Dynamics in the Southern Ethiopian Rangelands. Utah State University Pastoral Risk Management Project. Research brief 01-02-PARIMA.Google Scholar
SPSS. 2003. Statistical package for social sciences. SPSS 12.0 for windows. Chicago, IL, SPSS Inc.Google Scholar
Suriya, S., Boonsaen, P. & Innuruk, P. 2011. Body measurements of male Kamphaengsaen beef cattle as parameters for estimation of live weight. Kasetsart J. (Nat. Sci.), 45: 428434.Google Scholar
Szabolcs, B., Nagy, B., Nagy, L. & Kiss, B. 2007. Comparison of body measurements of beef cows of different breeds Arch. Tierz., Dummerstorf, 50(4): 363373.Google Scholar
Takele, T. 2005. On farm phenotypic Characterization of Sheko breed of cattle and their habitat in Bench Maji. M.Sc. thesis submitted to School of Graduate Studies Alemaya University, Ethiopia.Google Scholar
Tolenkhomba, T.C., Konsam, D.S., Shyamsana Singh, N., Prava, M., Damodor Singh, Y., Ayub Ali, M. & Motina, E. 2012. Factor analysis of body measurements of local cows of Manipur, India. Int. Multidisciplin. Res. J., 2(2): 7782.Google Scholar
Willamson, G. & Pyne, W.J.A. 1978. An introduction of animal husbandry in the tropics, 3rd edition. USA, Longman Inc., p. 2.Google Scholar
Willeke, H. & Dürsch, T. 2002. Prediction of the body weight of Simmental heifers using heart girth measurements. Arch. Tierzucht, 45(1): 2328.Google Scholar
Yanar, M., Tüzemen, N., Özhan, M., Aydın, R. & Uğur, F. 1995. Prediction of body weights from body measurements in Brown Swiss cattle. Turk. J. Vet. Anim. Sci., 19: 357360.Google Scholar
Young, B.A. 1981. Cold stress as it affects animal production. J. Anim. Sci., 52: 154163.CrossRefGoogle ScholarPubMed
Yunusa, A.J., Salako, A.E. & Oladejo, O.A. 2013. Principal component analysis of the morphostructure of Uda and Balami sheep of Nigeria. Int. Res. J. Agric. Sci., 1(3): 4551.Google Scholar
Zechner, P., Zohman, F., Sölkner, J., Bodo, I., Habe, F. & Marti, E. 2001. Morphological description of the Lipizzan horse population. Livestock Prod. Sci., 69(2): 163177.Google Scholar
Zulu, D.N. 2008. Genetic Characterization of Zambian native cattle breeds. M.Sc. thesis, submitted to Virginia Polytechnic Institute and State University, p. 68.Google Scholar