Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-18T14:15:04.938Z Has data issue: false hasContentIssue false

Inbreeding and loss of founder alleles in four variations of a conservation programme using circular mating, for Danish Shorthorn Cattle

Published online by Cambridge University Press:  01 August 2011

M. Trinderup
Affiliation:
Department of Animal Science and Animal Health, the Royal Veterinary and Agricultural University, 13 Bülowsvej, 1870 Frederiksberg C, Denmark
J.N. Jørgensen
Affiliation:
Department of Animal Science and Animal Health, the Royal Veterinary and Agricultural University, 13 Bülowsvej, 1870 Frederiksberg C, Denmark
M. Hansen
Affiliation:
The Danish Agricultural Advisory Centre, The National Committee of Danish Cattle Husbandry, 15 Udkjærsvej, Skejby, 8200 Århus N, Denmark
Get access

Summary

The beef cattle breed Danish Shorthorn is used as a model for simulation of four variations of the circular mating scheme running for 50 years. Schemes 1 and 2 used a fixed exchange of bulls between female groups while schemes 3 and 4 used a random exchange of bulls between female groups. The number of bulls used in schemes 1 and 4 was 16 while the number of bulls used in schemes 2 and 3 was 8. Inbreeding levels were computed and gene dropping was applied to estimate the risk of founder allele loss. In the population of year 50 the inbreeding levels for the four mating schemes are not statistically different. The male founder alleles contribute strongly to the population of year 50. The female founder alleles are in greater risk of being lost than the male founder alleles.

Résumé

La race bovine à viande Danish Shorthorn est utilisée comme modèle pour la simulation de quattre variations du schéma circulaire d'accouplement au long de 50 ans. Les schémas 1 et 2 utilisent un échange fixe de taureaux dans des groupes de femmelles. Le nombre de taureaux utilisés dans les schémas 1 et 4 a été de 16, tandis que le nombre de taureaux utilisés dans les schémas 2 et 3 était de 8. On a établi les niveaux de consanguinité et appliqué le comptage des gènes pour estimer le risque de perte d'allèles de base. Dans la population de la 50ème année les niveaux de consanguinité pour les quattre schémas d'accouplement ne sont pas statistiquement différents. Les allèles mâles de base contribuent fortement à la population de la 50ème année. Les allèles femmelles de base se trouvent en plus grand péril de perte que ceux des mâles.

Type
Research Articles
Copyright
Copyright © Food and Agriculture Organization of the United Nations 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adalsteinsson, S., Dýrmundsson, Ó.R., Bjarnadóttir, S. & Eythórsdóttir, E.. 1994. The Islandic Goat - a case study of a small old population. Proceedings of the 5th World Congress on Genetics Applied to Livestock Production. Guelph, Canada 4: 517519.Google Scholar
Bodó, I. 1990. Methods and experiences with in situ preservation of farm animals. In: FAO Animal Production and Health Paper. Ed. by Gerald Wiener, FAO Rome. 80: 85102.Google Scholar
Boichard, D., Maignel, L. & Verrier, E.. 1997. The value of using probabilities of gene origin to measure genetic variability in a population. Genetic Selection Evolution. 29: 523.CrossRefGoogle Scholar
Chevalet, C. & De Rochambeau, H.. 1985. Predicting the Genetic Drift in small Populations. Livestock Production Science. 13: 207218.CrossRefGoogle Scholar
Falconer, D.S. & Mackay, T. F.C.. 1996. Introduction to quantitative genetics. Fourth edition.Longman Scientific & Technical, pp. 464.Google Scholar
Foose, T. J. 1986. Genetics and demography of small populations. In: The Przewalski Horse and restoration to its natural habitat in Mongolia. FAO Animal Production and Health Paper, FAO, Rome, 61:9 3103.Google Scholar
Kimura, M. & Crow, J.F.. 1963. On the Maximum Avoidance of Inbreeding. Genetical Research, 4: 399415.CrossRefGoogle Scholar
Lacy, R. C. 1989. Analysis of founder representation in pedigrees: Founder equivalents and founder genome equivalents. Zoo Biology, 8: 111123.CrossRefGoogle Scholar
MacCluer, J. W., Vande Berg, J.L., Read, B. & Ryder, O.A.. 1986. Pedigree analysis by computer simulation. Zoo Biology, 5: 147160.CrossRefGoogle Scholar
Quaas, R. L. 1976. Computing the diagonal elements and inverse of a large numerator relationship matrix. Biometrics, 32: 949953.CrossRefGoogle Scholar
Rognoni, G. & Finzi, A.. 1984. Aspects of conservation of animal genetic resources - Italian experinces. Livestock Production Science, 11: 6164.CrossRefGoogle Scholar
Smith, C. 1984. Genetic aspects of conservation in farm livestock. Livestock Production Science, 11: 3748.CrossRefGoogle Scholar
Te Braake, M. F. H., Groen, A.F. & Van der Lugt, A.W.. 1994. Trends in inbreeding in Dutch Black and White dairy cattle. Journal of Animal Breeding and Genetics, 111: 356366.CrossRefGoogle Scholar
Wang, J. L., Xu, J.C., Song, J.Z. & Tang, W.S.. 1994. Study on mating systems for controlling inbreeding levels in domestic animal populations with overlapping generations. Proceedings of the 5th World Congress on Genetics Applied to Livestock Production. Guelph, 21: 536539.Google Scholar