Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-13T03:11:25.499Z Has data issue: false hasContentIssue false

Use of Single- and Multi-Locus and Polymerase Chain Reaction Systems for Zygosity Determination - Clinical Application in Twins with Clefts of the Lip and Palate

Published online by Cambridge University Press:  01 August 2014

H. Eufinger*
Affiliation:
University Hospital of Oral & Maxillofacial Surgery - Regional Plastic Surgery, Knappschafts Hospital, Ruhr-University, Bochum, Germany
S.P. Rand
Affiliation:
Institute of Forensic Medicine, Westfälische Wilhelms-University, Münster, Germany
U. Schütte
Affiliation:
Institute of Forensic Medicine, Westfälische Wilhelms-University, Münster, Germany
*
Universitätsklinik f. Mund-, Kiefer- und Gesichtschirurgie - Plastische Operationen -, In der Schornau 23-25, 44892 Bochum, Germany

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Precision of zygosity determination in twins can be improved by the use of modern methods of DNA analysis. The clinical application of 4 single- (SLS) and 2 multi-locus (MLS), and 6 PCR (polymerase chain reaction) systems for zygosity determination in 12 twin pairs with oral clefts was compared with regard to the quality and quantity of sample material required and the probability of error in monozygosity determination. PCR systems proved to be superior to SLS or MLS, as DNA sampling is much more convenient, while its level of accuracy still fulfils clinical requirements. For this reason, PCR systems should be considered a basic method in modern clinical twin research.

Type
Research Article
Copyright
Copyright © The International Society for Twin Studies 1995

References

REFERENCES

1.Akane, A, Matsubara, K, Shiono, H, Yamada, M, Nakagome, Y (1991): Diagnosis of twin zygosity by hypervariable RFLP markers. Am J Med Genet 41:9698.CrossRefGoogle ScholarPubMed
2.Allen, RC, Graves, G, Budowle, B (1989): Polymerase chain reaction amplification products separated on rehydratable Polyacrylamide gels and stained with silver. Bio Techniques 7:736744.Google Scholar
3.Azuma, C, Kamiura, S, Nobunaga, T, Negoro, T, Saji, F, Tanizawa, O (1989): Zygosity determination of multiple pregnancy by desoxyribonucleic acid fingerprints. Am J Obstet Gynecol 160:734736.CrossRefGoogle Scholar
4.Brinkmann, B, Rand, S, Wiegand, P (1991): Population and family data of RFLP's using selected single- and multi-locus systems. Int J Leg Med 104:8186.Google Scholar
5.Brinkmann, B, Wiegand, P, Henke, J (1992): Anwendbarkeit und Beweiswert von DNA-Polymorphismen in der forensischen Abstammungsbegutachtung. Klin Lab 38:629641.Google Scholar
6.Budowle, B, Chakraborty, R, Giusti, AM, Eisenberg, AJ, Allen, RC (1991): Analysis of the variable number of tandem repeats locus D1S80 by the polymerase chain reaction followed by high resolution Polyacrylamide gel electrophoresis. Am J Hum Genet 48:137144.Google Scholar
7.DNA recommendations (1992): 1992 report concerning recommendations of the DNA Commission of the International Society for Forensic Haemogenetics relating to the use of PCR-based polymorphisms. Int J Leg Med 104:6364.Google Scholar
8.Eufinger, H, Rand, S, Scholz, W, Machtens, E (1993): Clefts of the lip and palate in twins: use of DNA fingerprinting for zygosity determination. Cleft Palate J 30:564568.Google Scholar
9.Gill, P, Jeffreys, AJ, Werrett, DJ (1985): Forensic application of DNA “fingerprints”. Nature 318: 577579.Google Scholar
10.Hill, AVS, Jeffreys, AJ (1985): Use of minisatellite DNA probes for determination of twin zygosity at birth. Lancet II:13941395.Google Scholar
11.Hummel, K, Baumgarten, R (1970): Plausibilität der Monozygotic bei gleichgeschlechtlichen Zwillingen auf Grund blutgruppenserologischer Befunde. Humangenetik 9:286293.Google Scholar
12.Jeffreys, AJ, Wilson, V, Thein, SL (1985): Hypervariable “minisatellite” regions in human DNA. Nature 314:6773.CrossRefGoogle ScholarPubMed
13.Jeffreys, AJ, Brookfield, JFY, Semeonoff, R (1985): Positive identification of an immigration test-case using human DNA fingerprints. Nature 317:818819.Google Scholar
14.Jones, L, Thein, SL, Jeffreys, AJ, Apperly, JF, Catovsky, D, Goldman, JM (1987): Identical twin marrow transplantation for 5 patients with chronic myeloid leukaemia: Role of DNA fingerprinting to confirm monozygosity in 3 cases. Eur J Haematol 39:144147.Google Scholar
15.Machin, GA (1990): Definitive methods of zygosity determination in twins: relevance to problems in the biology of twinning. Acta Genet Med Gemellol 39:459471.Google Scholar
16.Mullis, K, Faloona, F, Scharf, S, Saiki, R, Horn, G, Erlich, H (1987): Specific synthesis of DNA in vitro via a polymerase catalyzed chain reaction. Methods Enzymol 155:335350.Google Scholar
17.Rand, S, Puers, C, Skowasch, K, Wiegand, P, Budowle, B, Brinkmann, B (1992): Population genetics and forensic efficiency data of 4 AMPFLP's. Int J Leg Med 104:329333.CrossRefGoogle Scholar
18.Smith, JC, Newton, CR, Alves, A, Anwar, R, Jenner, D, Markham, AF (1990): Highly polymorphic minisatellite probes. Further evaluation for individual identification and paternity testing. J Forensic Sci Soc 30:318.Google Scholar
19.Vogel, F, Motulsky, AG (1979): Human genetics. Problems and approaches. Berlin, Heidelberg & New York: Springer Verlag.Google Scholar
20.Wiegand, P, Budowle, B, Rand, S, Brinkmann, B (1993): Forensic validation of the STR systems SE 33 and TC 11. Int J Leg Med 105:315320.CrossRefGoogle ScholarPubMed