Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-25T02:33:00.830Z Has data issue: false hasContentIssue false

Leukocyte alkaline phosphatase in Down's syndrome

Published online by Cambridge University Press:  01 August 2014

Giuseppe Cardinali
Affiliation:
Cattedra di Genetica Medica dell'Università, presso l'lstituto di Genetica Medica e Gemellologia, « G. Mendel », Roma (Italia) Istituto di Glinica Pediatrica, dell'Università di Roma (Italia)
Giuliana Cardinali
Affiliation:
Cattedra di Genetica Medica dell'Università, presso l'lstituto di Genetica Medica e Gemellologia, « G. Mendel », Roma (Italia) Istituto di Glinica Pediatrica, dell'Università di Roma (Italia)
Francesco Renzulli
Affiliation:
Cattedra di Genetica Medica dell'Università, presso l'lstituto di Genetica Medica e Gemellologia, « G. Mendel », Roma (Italia) Istituto di Glinica Pediatrica, dell'Università di Roma (Italia)
Luigi Capotorti
Affiliation:
Cattedra di Genetica Medica dell'Università, presso l'lstituto di Genetica Medica e Gemellologia, « G. Mendel », Roma (Italia) Istituto di Glinica Pediatrica, dell'Università di Roma (Italia)
Enzo Ferrante
Affiliation:
Cattedra di Genetica Medica dell'Università, presso l'lstituto di Genetica Medica e Gemellologia, « G. Mendel », Roma (Italia) Istituto di Glinica Pediatrica, dell'Università di Roma (Italia)

Summary

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The Authors studied the leukocyte alkaline phosphatase (LAP) activity in 40 subjects with Down's syndrome. The age of the patients ranged from one week to 15 years. Chromosome analysis was carried out in 13 cases. 42 normal children of the same age as the patients were used as controls. The mean value of LAP in the patients with Down's syndrome was 175.5 and in the control group 108.8. In the latter group the LAP activity was clearly influenced by the age; the highest values were obtained in children under 11 years of age. The regression coefficient of the LAP on the age in the control group was –3.73. In the patients with Down's syndrome the differences observed between the various age groups were not statistically significant.

Chromosome studies showed a 21 trisomy in 12 cases; in one case a 15/21 translocation was found. The latter case presented an elevated LAP activity.

The Authors support the hypothesis that the gene or genes controlling LAP activity are located in the 21 chromosome and that the LAP activity may vary under the influence of several factors within the limits of the genetic control.

Type
Research Article
Copyright
Copyright © The International Society for Twin Studies 1966

References

Bibliografia

Alter, A. A. et al. (1963). Studies on leukocyte alkaline phosphatase in mongolism — a possible chromosome marker. Blood, 22: 165.Google Scholar
Baikie, A. G. et al. (1965). Phosphohexokinase activity of erythrocytes in mongolism. Lancet, 1: 412.Google Scholar
Bertolotti, E. et al. (1964). La fosfatasi alcalina nei granulociti neutrofili. Suo comportamento nelle prime epoche della vita. (Studio negli immaturi nel corso del primo mese di vita). Minerva Med., 16: 72.Google Scholar
Beutler, E. et al. (1962). The normal human female as a mosaic of X chromosome activity. Studies using the gene for G-6-P-D deficiency as a marker. Proc. Nat. Acad. Sci., 48: 9.Google Scholar
Brandt, N.J. (1963 a). Galactose-1-phosphatase-uridil-transferase in oligophrenic patients with special reference to patients with Down's syndrome. Danish Med. Bull., 10: 50.Google Scholar
Brandt, N.J. et al. (1963 b). Galactosaemia locus and the Down's syndrome chromosome. Lancet, II: 700.Google Scholar
Childs, B. et al. (1958). A genetic study of a defect in glutathione metabolism of erythrocyte. Bull. Hopkins Hosp., 122: 21.Google Scholar
Classificazione di Denver (1960). Proposition d'un système standard de nomenclature des chromosomes humains. Ann. Genet., 1: 35.Google Scholar
De Castro, D. (1961). Genetica e Statistica. In Gedda, L.: De Genetica Medica, I, Ed. Istituto Mendel, Rome.Google Scholar
Fraccaro, M. et al. (1960). Chromosomal abnormalities in father and mongol child. Lancet, 1: 724.Google Scholar
Gershoff, S. N. et al. (1958). Metabolic studies of mongoloids. Amer. J. Clin. Nutr., 6: 526.Google Scholar
Gershoff, S. N. et al. (1959). Effect of pyridoxine administration on the urinary excretion of oxalic acid, pyridoxine and related compounds in mongoloids and non mongoliods. Amer. J. Clin. Nutr., 7: 76.Google Scholar
Hayhoe, F. G. J., Quaglino, D. (1958). Cytochemical demonstration and measurement of leukocyte alkaline phosphatase activity in normal and pathological states by modified azo-dye counting technique. Brit. J. Haemat., 4: 375.Google Scholar
Hook, E. B., Engel, R. R. (1964). Leukocyte life-span, leukocyte alkaline phosphatase, and the 21st chromosome. Lancet, I: 112.Google Scholar
Hsia, D. et al. (1964). Studies on galactose oxidation in Down's syndrome. New Engl. J. Med., 270: 1085.CrossRefGoogle ScholarPubMed
Jerome, H. et al. (1960). Etude de l'excrétion urinarie de certains métabolites du tryptophane chez les enfants mongoliens. C. R. Acad. Sci., 251: 474.Google Scholar
King, M. J. et al. (1962 a). The polymorph alkaline phosphatase in mongolism. Lancet, 2: 661.Google Scholar
King, M. J. et al. (1962 b). Alkaline-phosphatase activity of polymorphs in mongolism. Lancet, 2: 1302.Google Scholar
Lawler, S. D. (1962). Genes on the mongol chromosome? Lancet, 2: 837.Google Scholar
Lejeune, J. et al. (1959 a). Les chromosomes humains en culture de tissus. C. R. Acad. Sci., 248: 602.Google Scholar
Lejeune, J. et al. (1959 b). Etude des chromosomes somatiques de neuf enfants mongoliens. C. R. Acad. Sci., 248: 1721.Google Scholar
Lejeune, J. et al. (1959 c). Le mongolisme, maladie chromosomique (trisomie). Bull. Acad. Nat. Med., 143: 256.Google Scholar
Lennox, B. et al. (1962). The polymorph alkaline phosphatase in mongolism. Lancet, II: 991.Google Scholar
Lyon, M. F. (1962). Sex chromatin and gene action in the mammalian X chromosome. Amer. J. Hum. Genet., 14: 135.Google Scholar
Marmont, A. et al. (1963). La fosfatasi alcalina leucocitaria in ematologia. Arch. Maragliann Pat. Clin., 19: 231.Google Scholar
Mellmann, W. J. et al. (1964). Leukocyte enzymes in Down's syndrome. Lancet, II: 674.Google Scholar
Mitus, W. J. et al. (1958). Alkaline phosphatase of mature neutrofils in chronic forms of the meyloproliferative syndrome. Amer. J. Clin. Path., 30: 285.Google Scholar
Moloney, W. C. (1961). Histochemical studies on leukocytes. Proc. 8th Congr. Europ. Soc. Haematol., 1: 9. Vienna, 1961. S. Karger, Basel-New York.Google Scholar
Moorhead, P. S. et al. (1960). Chromosome preparations of leukocytes cultures from human peripheral blood. Exp. Cell. Res., 20: 613.Google Scholar
Nowell, P. C., Hungerforp, D. A. (1960). A minute chromosome in human chronic granulocytic leukemia. Science, 132: 1497.Google Scholar
O'Sullivan, M. A., Pryles, C. V. (1963). A comparison or leukocyte alkaline phosphatase determinations in 200 patients with mongolism and 200 « familial » controls. Mew Engl. J. Med., 268: 1168.Google Scholar
Pearson, E. S., Hartley, H. O. (1958). Biometrika Tables for Statisticians. University Press, Cambridge.Google Scholar
Penrose, L. S. et al. (1960). Chromosomal translocations in mongolism and in normal relatives. Lancet, 2: 409.Google Scholar
Polani, P. E. et al. (1960). A mongol girl with 46 chromosomes. Lancet, 1: 721.Google Scholar
Quigley, H. Y. et al. (1960). The activity of alkaline phosphatase in granular leukocytes during pregnancy and the puerperium: a preliminary report. Amer. J. Clin. Path., 33: 109.Google Scholar
Rosen, R. B., Nishiyama, H. (1965). Leukocyte life-span and leukocyte alkaline phosphatase. Lancet, I: 554.Google Scholar
Rosen, R. B., Teplitz, R. L. (1965). Chronic granulocytic leukemia complicated by ulcerative colitis; elevated leukocyte alkaline phosphatase and possible modifier gene deletion. Blood, 26: 148.Google Scholar
Rosner, F. et al. (1965). Blood-serotonin activity in trisomic and translocation Down's syndrome. Lancet, I: 1191.Google Scholar
Trubowitz, S. et al. (1962). The leukocyte alkaline phosphatase in mongolism. Lancet, 2: 486.Google Scholar
Turpin, R., Lejeune, J. (1965). Les Chromosomes Humains. Ed. Gauthier-Villars, Paris.Google Scholar
Valentine, W. N. et al. (1954). Studies on leukocyte alkaline phosphatase activity: relation to « stress » and pituitary-adrenal activity. J. Lab. Clin. Med., 44: 219.Google Scholar
Valentine, W. N. et al. (1957). The relationship of leukocyte alkaline phosphatase to « stress », to ACTH and adrenal 17-OH-corticosteroids. J. Lab. Clin. Med., 47: 723.Google Scholar
Wachstein, M. (1946). Alkaline phospatase activity in normal and abnormal human blood and bone marrow cells. J. Lab. Clin. Med., 31: 1.Google Scholar
Wiltshaw, E., Moloney, W. C. (1955). Histochemical and biochemical studies on leukocyte alkaline phospatase activity. Blood, 10: 1120.Google Scholar
Xefteris, E. et al. (1961). Leukocyte alkaline phosphatase in busulfan induced remission of chronic granulocytic leukemia. Blood, 18: 202.Google Scholar