Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-24T12:07:54.642Z Has data issue: false hasContentIssue false

Leucocyte Morphology and Chromosome Morphology

Published online by Cambridge University Press:  01 August 2014

B. Dallapiccola*
Affiliation:
Department of Medical Genetics, University of Rome, Italy
O. Baricordi
Affiliation:
Department of Medical Genetics, University of Rome, Italy
L. Capra
Affiliation:
Department of Medical Genetics, University of Rome, Italy
C. Mazzilli
Affiliation:
Department of Medical Genetics, University of Rome, Italy
*
Cattedra di Genetica Medica, Università di Roma, Ospedale L. Spallanzani, Via Portuense 292, 00149 Roma, Italy

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The banding techniques currently employed in human cytogenetics for the identification of the individual chromosomes have been used to stain PHA lymphocytes and circulating leucocytes. The capacity of these techniques to localize singular chromosomes or chromosomal regions has been investigated.

It has been observed that among the four major categories of bands (Q, G, E and R) only the quinacrine staining is informative in interphase nuclei, because of its peculiarity to stain the long arm of the Y chromosome and few other heterochromatic regions. Interphase nuclei treated according to the C-bands show the presence of several heterochromatic masses, corresponding to the centromeric areas of individual chromosomes, but as such they cannot be recognized accurately. More specific and selective techniques, like G-11 and G-Y protocols, appear to be suitable to localize the centromeric regions of chromosome no. 9 and the long arm of Y chromosome. Variation of the incubation time in the alkali-saline solutions and of pH values have proven to be appropriate for the demonstration of other heterochromatic regions in interphase nuclei and in circulating leucocytes.

The “nuclear” approach to the study of specific heterochromatic regions of human chromosomes may be of practical interest into the investigation of several biological problems and into the detection of individuals carrying chromosome variants.

Type
Research Article
Copyright
Copyright © The International Society for Twin Studies 1975

References

REFERENCES

Arrighi, F.E., Hsu, T.C. 1971. Localization of heterochromatin in human chromosomes. Cytogenetics, 10: 8186.Google Scholar
Barr, H., Ellison, J.R. 1972. Ectopic pairing of chromosome regions containing chemically similar DNA. Chromosoma, 39: 653661.CrossRefGoogle ScholarPubMed
Bobrow, M., Pearson, P.L., Collacott, H.E. 1971. Para-nucleolar position of the human Y-chromosome in interphase nuclei. Nature (Lond.), 232: 556557.CrossRefGoogle ScholarPubMed
Bobrow, M., Madan, K., Pearson, P.L. 1972. Staining of some specific regions of human chromosomes, particularly the secondary constriction of N. 9. Nature (New Biol.), 238: 122124.CrossRefGoogle Scholar
Caspersson, T., Zech, L., Modest, E.J., Foley, G.E., Wagh, U., Simonsson, E. 1969. DNA-binding fluorochromes for the study of the organization of the metaphase nucleus. Exp. Cell Res., 58: 141143.Google Scholar
Casspersson, T., Zech, L., Johansson, G. 1970. Differential binding of alkilating fluorochromes in human chromosomes. Exp. Cell Res., 60: 315319.Google Scholar
Caspersson, T., Lomakka, G., Zech, L. 1971. The 24 fluorescence patterns of the human metaphase chromosomes — distinguishing characters and variability. Hereditas (Lund), 67: 89102.Google Scholar
Corneo, G., Ginelli, E., Polli, E. 1970. Repeated sequences in human DNA. J. Mol. Biol., 48: 319327.Google Scholar
Corneo, G., Ginelli, E., Polli, E. 1971. Renaturation properties and localization in heterochromatin of human satellite DNA's. Biochim. Biophys. Acta, 247: 528534.Google Scholar
Corneo, G., Zardi, L. Polli, E. 1972. Elution of human satellite DNA's on a methylated albumine kieselgur chromatographic column: isolation of satellite DNA IV. Biochim. Biophys. Acta, 269: 201204.CrossRefGoogle Scholar
Crossen, P.E. 1974. Unusual chromosome bands revealed by aging. Humangenetik, 21: 197202.Google Scholar
Dallapiccola, B. 1969. La morfologia dei leucociti nelle sindromi da aberrazioni congenita dei cromosomi. Haematologica, 54: 2982.Google Scholar
Dallapiccola, B. 1971. Identification of the human sex chromosome complement in polymorphonuclear leukocytes: a new technique. J. Lab. Clin. Med., 78: 8893.Google Scholar
Dallapiccola, B., Castoldi, G.L. 1972. Small drumsticks and Y-chromosome. 14th Int. Congr. Hematology, Sao Paulo, Brasil Abst. n. 141.Google Scholar
Dallapiccola, B. 1973. Leucocyte abnormalities in syndromes due to chromosome aberrations. In Vitro v CSSR, 2B: 199215.Google Scholar
Dallapiccola, B. 1973. Diagnosi di paternità sui granulociti del sangue periferico: studio in fluorescenza con l'impiego di chinacrina. Haematologica, 58: 227232.Google Scholar
Dallapiccola, B., Franceschini, F. 1973. Sul significato dei cosiddetti « small clubs » nei granulociti dei soggetti di sesso maschile. Haematologica, 58: 233238.Google Scholar
Dallapiccola, B., Malacarne, P. 1973. Rapporto fra cromosoma Y e nucleolo. Haematologica, 58: 214218.Google Scholar
Dallapiccola, B., Ricci, N. 1975. Selective staining and oil destaining of the Y and other chromosomes. Humangenetik, 26: 251255.Google Scholar
Davidson, W.M., Smith, D.R. 1954. A morphological sex differences in the polymorphonuclear neutrophil leucocytes. Brit. Med. J., 2: 67.Google Scholar
Dutrillaux, B., de Grouchy, J., Finaz, C., Lejeune, J. 1971. Mise en evidence de la structure fine des chromosomes humains par digestion enzymatique (pronase en particulier). C.R. Acad. Sci. (Paris), 273: 587588.Google Scholar
Dutrillaux, B., Lejeune, J. 1971. Sur une nouvelle technique d'analyse du caryotype humain. C.R. Acad. Sci. (Paris), 272: 26382640.Google Scholar
Dutrillaux, B. 1973. Nuveau systeme de marquage chromosomique: les bandes T. Chromosoma, 41: 395402.Google Scholar
Faust, J., Vogel, W. 1974. Are « N » bands selective staining specific heterochromatin? Nature (Lond.), 249:352353.CrossRefGoogle Scholar
Gagné, R., Tanguay, R., Laberge, C. 1971. Differential staining patterns of heterochromatin in man. Nature (New Biol.), 232: 2930.Google Scholar
Gagné, R., Laberge, C. 1972. Specific cytological recognition of the heterochromatic segment of number 9 chromosome in man. Exp. Cell Res., 73: 239242.CrossRefGoogle Scholar
Gall, J., Pardue, M.L. 1971. Nucleic acid hybridization in cytological preparations. Methods Enzymol. 21: 470.Google Scholar
George, K.P. 1970. Cytochemical differentiation along human chromosomes. Nature (Lond.), 226: 8091.CrossRefGoogle ScholarPubMed
Gropp, A., Hilwig, I., Seth, F.K. 1972. Study of constitutive heterochromatin using a direct fluorescence staining technique. In Pfeiffer, R.A. (ed.): Modern Aspects of Cytogenetics: Constitutive Heterochromatin in Man. Stuttgart-New York: Schattauer.Google Scholar
Heinz, E. 1928. Das Heterochromatin der Moose I. Jahrb. Wiss. Bot., 69: 762.Google Scholar
Hoehn, H., Martin, G.M. 1973. Non random arrangement of human chromatin: topography of disomic markers X, Y and lqh. Cytogenet. Cell Genet., 12: 443452.Google Scholar
Huehns, E.R., Lutzner, M., Hecht, F. 1964. Nuclear abnormalities of the neutrophils in D1(13-15) trisomy syndrome. Lancet, 1: 589590.Google Scholar
Jones, K.W., Corneo, G. 1971. Localization of satellite and homogeneous DNA sequences on human chromosomes. Nature (New Biol.), 233: 268271.CrossRefGoogle Scholar
Kim, My. A. 1974. Identification and characterization of heterochromatic regions in the human metaphase and interphase nucleus. Humangenetik, 21: 331340.CrossRefGoogle ScholarPubMed
Lamborot-Manzur, M., Tishler, P.V., Atkins, L. 1971. Fluorescent drumsticks in male polymorphs. Lancet, 1: 973974.CrossRefGoogle ScholarPubMed
Lima de Faria, A., Jaworska, H. 1968. Late synthesis in heterochromatin. Nature (Lond.), 217: 138.CrossRefGoogle ScholarPubMed
Martin, G.M., Sprague, C.A. 1969. Parasexual cycle in cultivated human somatic cells. Science, 166: 761762.Google Scholar
Marx, K.A., Allen, J.R., Hearst, J.E. 1973. In situ hybridization of the rapidly renaturing human DNA families. Genetics, 74: 173.Google Scholar
Matsui, S.I., Sasaki, M. 1973. Differential staining of nucleolus organizers in mammalian chromosomes. Nature (Lond.), 246: 148150.Google Scholar
Mittwoch, U. 1965. Review article: sex chromatin. J. Med. Genet., 1: 50.Google Scholar
Moorhead, P.S., Nowell, P.C., Mellman, W.J., Battips, D.M., Hungerford, D.A. 1960. Chromosome preparations of leucocytes cultured from human peripheral blood. Exp. Cell Res., 20: 613.Google Scholar
Nielsen, J., Friedrich, U., Hreidarsson, A.B. 1974 a. Frequency and genetic effect of 1qh+. Humangenetik, 21: 193210.Google Scholar
Nielsen, J., Friedrick, U., Hreidarsson, A.B. 1974 b. Frequency of 9qh+ and risk of chromosome aberrations in the progeny of individuals with 9qh+. Humangenetik, 21: 211216.Google Scholar
Paris Conference 1971. Standardization in human cytogenetics. Birth Defects, 8: 7. New York: The National Foundation.Google Scholar
Pearson, P.L., Bobrow, M., Vosa, C.G. 1970. Technique for identifying Y chromosomes in human interphase nuclei. Nature (Lond.), 226: 7880.Google Scholar
Polani, P.E., Mutton, D.E. 1971. Y-fluorescence in interphase nuclei, expecially circulating lymphocytes. Brit. Med. J., 1: 138142.Google Scholar
Ricci, N., Castoldi, G.L., Dallapiccola, B., Baserga, A. 1971. Small drumsticks and Y chromosomes. Brit. Med. J., 1: 346347.CrossRefGoogle ScholarPubMed
Schröder, J., de la Chapelle, A. 1972. Fetal lymphocytes in the maternal blood. Blood, 39: 152162.Google Scholar
Seabright, M. 1971. A rapid banding technique for human chromosomes. Lancet, 2: 971.CrossRefGoogle ScholarPubMed
Sumner, A. T., Evans, H. J., Buckland, R.A. 1971. New technique for distinguishing between human chromosomes. Nature (New Biol.), 232: 3132.Google Scholar
Thuline, H.C. 1971. Y-specific fluorescence in peripheral blood leucocytes. J. Pediat., 78: 875876.Google Scholar
Turpin, R., Bernyer, G. 1947. De l'influence de l'hérédité sur la formule d'Arneth (cas particulier du mongolisme). Rev. Hemat., 2: 189.Google Scholar
Yunis, J.J., Yasmineh, W.G. 1972. Model for mammalian constitutive heterochromatin. In Du Praw, E.J. (ed.): Advances in Cell and Molecular Biology (Vol. 2) New York-London: Academic Press.Google Scholar
Zech, L. 1969. Investigation of metaphase chromosomes with DNA-binding fluorochromes. Exp. Cell Res., 58: 463.Google Scholar