Published online by Cambridge University Press: 01 August 2014
Advances in computer technology have made possible a greater sophistication in the statistical analysis of pedigree data, however this is not necessarily manifest by fitting more comprehensive causative models. Planned twin and family studies measure numerous explanatory variables, including perhaps genetic and DNA marker information status on all pedigree members, and the cohabitation of all pairs of individuals. A statistical analysis should examine the contribution of these measured factors on individual means, and in explaining the variation and covariation between individuals, concurrently with the postulated effect of unmeasured factors such as polygenes. We present two models that meet this requirement: the Multivariate Normal Model for Pedigree Analysis for quantitative traits, and a Log-Linear Model for Binary Pedigree Data. For both models, important issues are examination of fit, detection of outlier pedigrees and outlier individuals, and critical examination of the model assumptions. Procedures for fulfilling these needs and examples of modelling are discussed.