Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-25T01:39:08.460Z Has data issue: false hasContentIssue false

Erythrocytary Glucose-6-Phosphate Dehydrogenase Deficiency – Study on its distribution in the province of Ferrara and its relation to malaria and thalassemia

Published online by Cambridge University Press:  01 August 2014

E. Gandini*
Affiliation:
Istituto di Genetica Medica dell'Università, Ferrara
C. Menini*
Affiliation:
Istituto di Genetica Medica dell'Università, Ferrara
A. De Filippis*
Affiliation:
Istituto di Genetica Medica dell'Università, Ferrara
G. Dell'Acqua*
Affiliation:
Istituto di Genetica Medica dell'Università, Ferrara
*
Istituto di Genetica Medica dell'Università, Ferrara, Italia
Arcispedale S. Anna, Centro Trasfusionale, Ferrara, Italia
Arcispedale S. Anna, Divisione Pediatrica Ospedaliera e Centro Studi della Microcitemia, Ferrara, Italia
Istituto di Genetica Medica dell'Università, Ferrara, Italia

Summary

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The distribution of G6PD-D in the Ferrara country has been studied by means of the Brilliant Cresyl Blue discoloration test: 2437 males have been tested in 11 localities.

The highest gene frequency of G6PD-D observed is consistent with the one expected after 25-30 generations of malaria selection, assuming an increased fitness of the heterozygotes, as it has been shown in computer simulated evolutionary trends for sex-linked genes. The thalassemia trait has also been shown to be very frequent in the same localities; its frequency is correlated with G6PD-D gene frequency and with the incidence of malaria in the past (1900).

G6PD-D frequency is not significantly correlated with malaria. Such a result is due to the significantly lower gene frequency of G6PD-D observed in the localities where the percentage of population affected by malaria was higher (40-60%). On the other hand, G6PD-D is frequently significantly correlated with malaria in the remaining localities where the incidence of the latter ranged from 0 to 35% of the affected population.

The mechanisms possibly involved in the determination of this distribution of G6PD-D are discussed.

Type
Research Article
Copyright
Copyright © The International Society for Twin Studies 1969

References

Bibliografia

Alfieri, N., Ortolani, M. (1950). Contributo alle ricerche sull'antico delta padano. Atti XV Congr. Geografico Italiano, Torino.Google Scholar
Allison, A.C. (1965). Population genetics of abnormal haemoglobins and glucose-6-phosphate-dehydrogenase deficiency. In Jonxis, J.H. P.: Abnormal Haemoglobins in Africa. Blackwell, Oxford.Google Scholar
Lisker, R., Motulsky, A.G. (1967). Computer simulation of evolutionary trends in an X-linked trait. Application to glucose-6-phosphate dehydrogenase deficiency in man. Acta Genet. (Basel), 17: 465474.Google Scholar
Livingstone, F.B. (1964). Aspects of the population dynamics of the abnormal hemoglobin and glucose-6-phosphate dehydrogenase deficiency genes. Amer. J. Hum. Genet., 16: 435450.Google ScholarPubMed
Motulsky, A.G. (1965). Theoretical and clinical problems of glucose-6-phosphate dehydrogenase deficiency: its occurrence in Africans and its combination with haemoglobinopathy. In Jonxis, J.H. P.: Abnormal Haemoglobins in Africa. Blackwell, Oxford.Google Scholar
Orta, F. (1917). Lo stato attuale della malaria in provincia di Ferrara. La Rivista, 8 04 1917.Google Scholar
Ortolani, M. (1956). La Pianura Ferrarese. Memorie di Geografia Economica. Vol. XV.Google Scholar
Ortolani, M. (1950). Ricerche sul Popolamento della Pianura Ferrarese. Bollettino Società Geografica Italiana. Serie VIII, Vol. III.Google Scholar
Pontremoli, S., Bargellesi, A., Conconi, F. (1969). Globin synthesis in the Ferrara thalassemia population. Ann. N.Y. Acad. Sci. (In press).CrossRefGoogle Scholar
Rucknagel, D.L., Neel, J.V. (1961). The hemoglobinopathies. In Steinberg, A.G.: Progress in Medical Genetics. Grune & Stratton, New York.Google Scholar
Silvestroni, E., Bianco, I., Alfieri, N. (1952). Sulle origini della microcitemia in Italia e nelle altre regioni della terra. Medicina, 2: 187216.Google Scholar
Silvestroni, E., Bianco, I., (1961). Diffusione e frequenza della microcitemia e delle anemie microcitemiche nell'Italia continentale ed in Sicilia. J. J. M. S.: Atti delle Giornate di Studio sul Problema Sociale della Microcitemia e del Morbo di Cooley, 5164.Google Scholar
Silvestroni, E., Bianco, I., (1963). Le Emoglobine Umane. In Gedda, L.: De Genetica Medica. Vol. IV. Ed. Istituto Mendel, Roma.Google Scholar
Siniscalco, M., Bernini, L., Filippi, G., Latte, B., Meerakhan, P., Piomelli, S., Rattazzi, M. (1966). Population genetics of haemoglobin variants, thalassemia and glucose-6-phosphate dehydrogenase deficiency, with particular reference to the malaria hypothesis. Bull. W.H.O., 34: 378393.Google Scholar
Yoshida, A. (1967). A single amino-acid substitution (asparagine-2 aspartic acid) between normal (B+) and the common Negro variant (A+) of human glucose-6-phosphate dehydrogenase. Proc. Nat. Acad. Sci.USA, 57: 835.CrossRefGoogle Scholar