Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-25T02:26:02.109Z Has data issue: false hasContentIssue false

Determination of Sex Chromatin — A New Concept

Published online by Cambridge University Press:  01 August 2014

Syed Shane Raza Zaidi*
Affiliation:
Department of Pathology, Philadelphia College of Osteopathic Medicine Philadelphia, Pennsylvania, USA
*
Department of Pathology, Philadelphia College of Osteopathic Medicine, F.H. Barth Pavilion, 4150 City Avenue, Philadelphia, Pa. 19131, USA

Summary

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Instead of the random activation and/or inactivation of the X-chromosome in sex determination, as suggested by the Lyon's hypothesis, a proposal is made here that crossingover between the sister- and/or nonsisterstrands at the sticky or nonsticky loci, at heterochromatinizing regions and at the inactivating centers of the centromère, be responsible for the heterochromatinization and/or heteropyknotization of the X-chromosome. (This proposal will be called the Mustafa hypothesis.)

Such would be the basis for the activation and/or inactivation of the X-chromatid(s), which would then replicate into a normal or a heterochromatic X-chromosome respectively. The heterochromatic X-chromosome may be transformed into a heteropyknotized mass of sex chromatin (Barr body). Translocation of the Y-chromosome and of some of the autosomes could also result in the same effect. Hence, the number of heterochromatinized X-chromosomes, and/or of heteropyknotized masses (Barr bodies), in each daughter-cell is directly proportional to half the number of chromatids involved in crossingover and/or translocation in the mother-cell.

Type
Research Article
Copyright
Copyright © The International Society for Twin Studies 1972

References

REFERENCES

Barr, M.L., Bertram, E.G. 1949. A morphological distinction between neurones of the male and female, and the behavior of the nucleolar satellite during accelerated nucleoprotein synthesis. Nature (Lond.), 163: 676677.Google Scholar
Bauke, J. 1970. Cytogenetic studies of a patient with chronic myelocytic leukemia and his non-leukemic identical twin. Acta Genet. Med. Gemellol., 19: 180182.Google Scholar
Beckert, W.H. 1962. Sex chromatin in mammalian vertebrates. Am. Zool., 2: 505506.Google Scholar
Benirschke, K., Brownhill, L.E., Beath, M.M. 1962. Somatic chromosomes of the horse, the donkey and their hybrids, the mule and the hinny. J. Reprod. Fertil., 4: 319326.CrossRefGoogle ScholarPubMed
Brinkhous, K.M., Graham, J.B. 1950. Hemophilia in the female dog. Science, 111: 723724.CrossRefGoogle ScholarPubMed
Clarke, C.A. 1970. Human Genetics and Medicine. The Institute of Biology's Studies in Biology No. 20. Edward Arnold Ltd.Google Scholar
Crow, J.F. 1968. Genetic Notes. 6th Ed. Burgess Publishing Co. Minneapolis.Google Scholar
Cuevas-Sosa, A. 1967. Crossing-over and the centromère. Cytogenetics. 6: 331341.CrossRefGoogle ScholarPubMed
Davies, S.H., Gavin, J., Goldsmith, K.L.G., Graham, J.B., Hamper, J., Hardisty, R.M., Harris, J.B., Holman, C.A., Ingram, G.I.C., Jones, T.G., McAfee, L.A., McKusick, V.A., O'Brien, J.R., Race, R.R., Sanger, R., Tipett, P. (1963). The linkage relations of hemophilia “A” and “B” (Christmas disease) to the Xg blood group system. Am. J. Hum. Genet., 15: 481492.Google Scholar
Ferguson-Smith, M.A., Alexander, D.S., Bowen, P., Goodman, R.M., Kaufmann, B.N., Jones, H.W. Jr., Heller, R.H. 1964. Clinical and cytogenetical studies in female gonadal dysgenesis and their bearing on the cause of Turner's syndrome. Cytogenetics, 3: 355383.Google Scholar
Ford, C.E., Evans, E.P. 1964. A reciprocal translocation in the mouse between the X-chromosome and short autosome. Cytogenetics, 3: 295305.Google Scholar
François, J. 1968. Genetic aspects of ophthalmology. Int. Opthalmol. Clin., 8: 779.Google Scholar
Geitler, L., 1937. Die Analyse Des Kernbaus und der Kernteilung der wasserlaufer Gerris Lateralis und Gerris Lacustris (Hemiptera Heteroptera) und die Soma Differenzierung. Z. Zellforsch. Mikrosk. Anat., 26: 641672.Google Scholar
Giannelli, F. 1970. Human chromosomes DNA synthesis. Monogr. Hum. Genet., 5: 64.Google Scholar
Graham, M.A., Barr, M.L. 1952. A sex difference in the morphology of metabolic nuclei in somatic cells of the cat. Anat. Rec, 112: 709724.Google Scholar
Grumbach, M.M., Morishima, A., Chu, E.H.Y., 1960. On the sex chromatin and the sex chromosomes in sexual anomalies in man: relation to origin of the sex chromatin. Acta Endocrinol. (Suppl.) (Kbh.), 35: 633.Google Scholar
Grumbach, M.M., Morishima, A. 1962. Sex chromatin and the sex chromosomes: on the origin of sex chromatin from a single X-chromosome. Acta Cytol. (Baltimore), 6: 4651.Google Scholar
Harnden, D.G. 1961. Nuclear sex in triploid XXY human cells. Lancet, 2: 488.CrossRefGoogle ScholarPubMed
Hartman, P.E., Suskind, S.R. 1969. Gene Action. 2nd Ed. Prentice-Hall Foundations of Modern Genetics Series. Prentice-Hall Inc., Englewood Cliffs, N. J. Google Scholar
Heitz, E. 1928. Das Heterochromatin der Moose. I. Jahrbucher für Wissenschaftliche Botanik, 69: 762818.Google Scholar
Heitz, E. 1929. Heterochromatin, Chromocentren, Ghromomeren. Ber. Dtsch. Botan. Ges., 47: 274284.Google Scholar
Hirschhorn, K., Firschein, I.L. 1964. Genetic activity of the X-chromosome in man. Trans. N. Y. Acad. Sci., 26: 545552.Google Scholar
Hsu, T.C., Benirschke, K. (1967). Potorous Tridactylus Apicalis (rat-kangaroo). In: An Atlas of Mammalian Chromosomes. Springer-Verlag, New York.Google Scholar
Isaacs, W.A. 1970. Gene expression in an interspecific hybrid: analysis of hemoglobins in donkey, horse and mule by peptide mapping. Biochem. Genet., 4: 7385.CrossRefGoogle Scholar
Joannides, T., Tsenki, C. 1969. A child with 49 chromosomes (XXXXY). Ber. Dtsch. Ophthalmol. Ges., 69: 419420.Google Scholar
Karpechenko, G.D. 1928. Polyploid hybrids of Raphanus sativa L. x Brassica olercea L. Z . Abstamm. Vererbungsl., 48: 185.Google Scholar
Kleihauer, E., Betke, K. 1963. Elution procedure for the demonstration of methaemoglobin in red cells of human blood smears. Nature (Lond.), 199: 11961197.Google Scholar
Lyon, M.F. 1961. Gene action in the X-chromosome of the mouse (Mus musculus L.). Nature (Lond.), 190: 372373.Google Scholar
Lyon, M.F. 1962 a. Attempts to test the inactive-X theory of dosage compensation in mammals. Heredity (Lond.), 17: 297.Google Scholar
Lyon, M.F. 1962 b. Sex chromatin and gene action in the mammalian X-chromosomes. Am. J. Hum. Genet., 14: 135148.Google Scholar
Lyon, M.F. 1963. Lyonisation of the X-chromosome. Lancet, 11201121.Google Scholar
McKusick, V.A. 1964. On the X-Chromosome of Man. American Institute of Biological Sciences, N.W. Washington, D.C. Google Scholar
Moore, K.L., Graham, M.A., Barr, M.L. 1953. The detection of chromosomal sex in hermaphrodites from a skin biopsy. Surg. Gynecol. Obstet., 96: 641648.Google ScholarPubMed
Moore, K.L., Barr, M.L. 1954. Nuclear morphology, according to sex, in human tissues. Acta Anat. (Basel), 21: 197208.Google Scholar
Moore, K.L. 1966. The Sex Chromatin. W.B.Saunders Co., Philadelphia.Google Scholar
Moorhead, P.S., Nowell, P.C., Millman, W.J., Battips, D.M., Hungerford, D.A. 1960. Chromosome preparations of leucocytes cultured from human peripheral blood. Exp. Cell Res., 20: 613616.Google Scholar
Mott, C.L., Lockhart, L.H., Rigdon, R.H. 1968. Chromosomes of the sterile hybrid duck. Cytogenetics, 7: 403412.CrossRefGoogle ScholarPubMed
Motulsky, A.G. 1967. Biochemical genetics in medicine. Acta Paediatr. Scand. (Suppl.), 172: 156169.Google Scholar
Mukherjee, B.B., Sinha, A.K. 1964. Single-active-X hypothesis: cytological evidence for random inactivation of X-chromosomes in a female mule complement. Proc. Natl. Acad. Sci. USA, 51: 252–239.Google Scholar
Muldal, S., Gilbert, C.W., Lajtha, L.G., Lindsten, J., Rowley, J., Fraccaro, M. 1963. Triti a ted thymidine incorporation in an isochromosome for the long arm of the X-chromosome in man. Lancet, 1: 861863.Google Scholar
Ohno, S., Kaplan, W.D., Kinosita, R. 1959 a. Formation of the sex chromatin by a single X-chromosome in liver cells of Rattus norvegicus , Exp. Cell Res., 18: 415418.CrossRefGoogle ScholarPubMed
Ohno, S., Kaplan, W.D., Kinosita, R. 1959 b. On the end-to-end association of the X and Y chromosomes of Mus musculus. Exp. Cell Res., 18: 282290.Google Scholar
Ohno, S., Hauschka, T.S. 1960. Allocycly of the X-chromosome in tumors and normal tissues. Cancer Res., 20: 541545.Google Scholar
Ohno, S., Weiler, C. 1962. Relationship between large Y-chromosome and side-by-side pairing of the XY-bivalent observed in the chinese hamster. (Cricetulus griseus). Chromosoma, 13: 106110.Google Scholar
Ohno, S. 1963. The creeping vole (Microtus oregoni) as a gonosomic mosaic. I. The OY/XY constitution of the male. Cytogenetics, 2: 232239.Google Scholar
Ohno, S., Becak, W., Becak, M.L. 1964. X-autosome ratio and the behavior pattern of individual X-chromosome in placental mammals. Chromosoma, 15: 1430.Google Scholar
Papayannopoulou, Th., Stamatoyannopoulos, G. 1964. Pseudomosaicism in males with mild glucose-6-phosphate dehydrogenase deficiency. Lancet, 2: 12151217.Google Scholar
Park, W.W. 1957. The occurrence of sex chromatin in early human and macaque embryos. J. Anat., 91: 369373.Google Scholar
Pawliger, D.F., Barrow, M., Noyey, W.D. 1970. Acute leukaemia and Turner's syndrome. Lancet, 1: 1345.Google Scholar
Pontecorvo, G. 1952. Genetic formulation of gene structure and gene action. Adv. Enzymol., 13: 121150.Google ScholarPubMed
Rao, D.C. 1970. Two gene hypothesis for hairy pinnae of the ear. Acta Genet. Med. Gemellol., 19: 448453.CrossRefGoogle ScholarPubMed
Reed, T.E., Simpson, N.E., Chown, B. 1963. The Lyon hypothesis. Lancet, 2: 467468.Google Scholar
Reitalu, J. 1957. Observation on the so-called sex chromatin in man. Acta Genet. Med. Gemellol., 6: 393402.Google Scholar
Russel, L.B., Bangham, J.W. 1959. Variegated-type position effects in the mouse. Genetics, 44: 532.Google Scholar
Russel, L.B., Bangham, J.W. 1960. Further analysis of variegated-type position effects from X-autosome translocation in the mouse. Genetics, 45: 10081009.Google Scholar
Russel, L.B. 1961. Genetics of mammalian sex chromosomes. Science, 133: 17951803.Google Scholar
Russel, L.B., Bangham, J.W. 1961. Variegated-type position effects in the mouse. Genetics, 46: 509525.Google Scholar
Russel, L.B. 1963. Mammalian X-chromosome action: inactivation limited in spread and in region of origin. Science, 140: 976978.Google Scholar
Sanger, R. 1971. Personal Correspondence June 29, 71. Blood Group Research Unit, Medical Research Council, London.Google Scholar
Schwarzacher, H.G. 1970. Die Ergebnisse elektromikroskopischer Untersuchungen an somatischen Chromosomen des Menschen. Humangenetik, 10: 195208.Google Scholar
Sebaoun, M., Fournier, M., Dreyfus, G., Netter, A. 1969. Two additional observations of 46,XX males. Ann. Endocrinol. (Paris), 30: 741758.Google Scholar
Serr, D.M., Ferguson-Smith, M.A., Lennox, B., Paul, J. 1958. Representation of the X-chromosome in intermitotic nuclei in man. Nature (Lond.), 182: 124.CrossRefGoogle ScholarPubMed
Stamatoyannopoulos, G., Panayotopoulos, A., Papayannopoulou, Th. 1964. Mild glucose-6-phosphate dehydrogenase deficiency in Greek males. Lancet, 2: 932935.Google Scholar
Stamatoyannopoulos, G., Papayannopoulou, Th., Bakapoulos, Chr., Motulsky, A.G. 1967. Detection of glucose-6-phosphate dehydrogenase deficient heterozygotes. Blood, 29: 87-1-1.Google Scholar
Stern, C. 1936. Somatic crossing-over and segregation in Drosophila melanogaster. Genetics, 21: 625730.Google Scholar
Swanson, C.P. 1964. Cytology and Cytogenetics. 6th Ed. Prentice-Hall, Englewood Cliffs, N.J. Google Scholar
Turpin, R., Lejeune, J., Breton, A. 1962. Hermaphroditisme XX/XXY. Comptes Rendus des Séances de L'Académie des Sciences. 255 3: 30883091.Google Scholar
Warmke, H.E. 1946. Sex determination and sex balance in Melandrium. Am. J. Bot., 33: 648660.Google Scholar
Wells, R.S., Jennings, M.C., Sanger, R., Race, R.R. 1966. Xg blood-groups and ichthyosis. Lancet, 2: 493494.Google Scholar
Whittaker, D.L., Copeland, D.L., Graham, J.B. 1962. Linkage of color blindness to hemophilias “A” and “B”. Am. J. Hum. Genet., 14: 149158.Google Scholar
Wilson, E.B. 1911. The sex chromosomes. Arch. Mikrosk. Anat., 77: 249271.Google Scholar
Witschi, E. 1956. Genie and morphologic structure of sex chromosomes. Proc. Int. Genet. Symp., Tokyo and Kyoto.Google Scholar