Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-25T01:38:05.892Z Has data issue: false hasContentIssue false

Biology of the Gene: The Ergon/Chronon System

Published online by Cambridge University Press:  01 August 2014

L. Gedda
Affiliation:
The Gregor Mendel Institute of Medical Genetics and Twin Research, Rome
G. Brenci
Affiliation:
The Gregor Mendel Institute of Medical Genetics and Twin Research, Rome

Summary

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The concordance of physiological and pathological times in human identical twin pairs induced the authors to postulate the existence of a hereditary biological time.

Having formulated the hypothesis that the information of each gene has a given period of existence and that, therefore, every gene has its own inherited temporal dimension, the authors report on five different experimental studies intended to verify their hypothesis.

In the first study (cf II. 1) a twin research on bone age and dental age is performed. The chronological study of the appearance of ossification nuclei in carpal bones and of mineralization of the gems of permanent dentition, in 20 MZ and 20 DZ human twin pairs, indicates that these wellknown “biological timetables” exhibit about 70% of genotypical control.

In order to verify whether biological time is a function of the genotype as a whole, or a property of each individual gene, the authors carried out an experimental study on the mean lifespan in different strains of Drosophila melanogaster whose genotypes were fully known (cf II.2). Their results indicate that the specific information of certain genes controls the insect's lifespan; it may also be inferred that the differential persistence of its specific information is an attribute of each individual gene. This chronological dimension of the gene is called chronon, which the authors also define as “the period during which the original information of the gene remains unchanged” — whether it is used for transcription or duplication, or it remains at the potential stage.

The determination of alkaline phosphatase activity in the same strains of D. melanogaster (cf II.3) affords an estimate of the amount of genie information (intensity of the individual trait) and the variation thereof during the gene's chronon. The authors observe that the amount of information decreases gradually during the gene's chronon, suggesting that this be due to the gradual exhaustion of a given specific energy. The decrease in the amount of information in the longitudinal study of chronon leads the authors to identify a further fundamental parametric unit of the gene which they call ergon.

Ergon is defined as “the degree of stability of a gene”.

In the fourth study (cf II.4) the twin test is applied to the chromosome association index in subcultures of lymphocytes from MZ and DZ twins at age 6 and age 60. This study affords a parallel estimate of chronon (i.e., duration of information) and ergon (i.e., stability of information).

Chronon and ergon are found to be interrelated; they may be considered as variables in a dimensional equation of the gene. Thus, the existence of the Ergon/Chronon (E/C) system is postulated.

Nine parameters of development and of senescence (first smile, first word, first steps, first pubic hair, menarche, first white hair, first loss of a permanent tooth, first use of reading glasses, onset of menopause) are studied in an experimental population of 666 twin pairs of either zygosity, leading the authors to formulate several conclusions concerning the characteristics of the E/C system (cf II.5).

The interpretation of their experimental findings leads the authors to consider the ergon (energy of stability) of a gene as the total result of the stabilities of all the nucleotides making up the DNA sequence of that gene. Since it is well known that the stability of adenine-thymine (AT) bonds exceeds the stability of guanine-cytosine (GC) bonds, and that different combinations of codons (differing in at least one nucleotide) may provide the same information, it is clear that identical polypeptide chains may be produced under the control of genetically different ergons resulting in genetically different chronons.

The authors summarize these concepts in the following two aphorisms: “one gene, one stability” (ergon) and “one gene, one time” (chronon).

Biological time, development, senescence, homeostasis and disease are interpreted by the authors in the light of the E/C system.

Type
Research Article
Copyright
Copyright © The International Society for Twin Studies 1969

References

Allen, G. (1955). Comments on the analysis of twin samples. Acta Genet. Med. Gemellol., 4: 143.CrossRefGoogle ScholarPubMed
Andersch, A. M., Szczpynsky, A. (1947). In: Test Fibel. Biochemia, Milano.Google Scholar
Aschoff, J. (1965). Circadian Clocks. Elsevier, Amsterdam.Google Scholar
Bartalos, M. (1967). On the concepts of chronon and chronaxy and their implications in neoplasia. Acta Genet. Med. Gemellol., 16: 21.CrossRefGoogle ScholarPubMed
Beard, R. E. (1959). Note on some mathematical mortality models. In Ciba Foundation: Colloquia on Ageing. Churchill, London.Google Scholar
Bertolotti, E. et al (1964). La fosfatasi alcalina nei granulociti neutrofili. Suo comportamento nelle prime epoche della vita. Minerva Med., 16: 72.Google Scholar
Bigozzi, U., Toccafondi, R., Morabito, F. (1961). Familiarità del ritardo puberale semplice. Proc. 2nd Int. Congr. Hum. Genet., Rome 1963.Google Scholar
Bünning, E. (1967). The Physiological Clock. Longmans, Green and Co., London.CrossRefGoogle Scholar
Burch, P. R. J. (1968). An Inquiry Concerning Growth, Disease and Ageing. Oliver and Boyd, Edinburgh.Google Scholar
Buschke, F. (1934). Röntgenologische Skeletstudien menschlichen Zwillingen und Mehrlingen. Georg Thieme Verlag, Leipzig.Google Scholar
Cameron, L. L., Padilla, G. M. (1966). Cell Synchrony. Academic Press, New York.Google Scholar
Cardinali, G., Cardinali, G., Renzulli, F., Capotorti, L., Ferrante, E. (1966). La fosfatasi alcalina leucocitaria nella sindrome di Down. Acta Genet. Med. Gemellol., 3: 231.Google Scholar
Carrel, A. (1935). L'Homme, Cet Inconnu. Ed. Plon, Paris.Google Scholar
Casa, D. (1960). Accrescimento differenziale familiare. Atti 1° Simp. Med. Auxol. Selecta Medica. Ed. Ist. Mendel, Roma.Google Scholar
Chovnick, A. (1960). Biological Clocks. Cold Spring Harb. Symp. Quant. Biol., Vol. 25.Google Scholar
Clark, A. M. (1964). Genetic factors associated with aging. In: Strehler, B. L., 1964.Google Scholar
Craddock, C. G. (1960). Cell Production Regulation. Ciba Foundation Symp., Haemopoiesis.Google Scholar
Dahlberg, G. (1923). Twins and heredity. Hereditas, 4: 27.CrossRefGoogle Scholar
De Toni, F. (1954). L'Accrescimento Umano. Scuola Editrice, Brescia.Google Scholar
Donovan, B. T., Van der Werff, T., Bosch, J. J. (1965). Physiology of Puberty. Monographs of the Physiological Society. Arnold Publ.Google Scholar
Failla, G. (1960). The aging process and somatic mutations. In Strehler, B. L.: The Biology of Aging. Publ. N. 6, Amer. Inst. Biol. Sci., Washington.Google Scholar
Falorni, M. L. (1968). Aspetti Psicologici della Personalità nell'Età Evolutiva. C. E. Giunti, G. Barbera-Universitaria.Google Scholar
Fincham, J. R. S. (1966). Genetic Complementation. W. A. Benjamin, New York.Google Scholar
Fischer, A. (1946). Biology of Tissue Cells. Stechert, New York.Google Scholar
Fishman, W. H., Lerner, F. (1953). In: Test Fibel. Biochemia, Milano.Google Scholar
Garn, S., Lewis, A., Polacheck, D. (1958). Variability of tooth formation in man. Science, 128: 510.Google Scholar
Gedda, L. (1951). Studio dei Gemelli. Ed. Orizzonte Medico, Roma.Google Scholar
Gedda, L. (1954). Genetica Medica. In: Analecta Genetica. Ed. Ist. Mendel, Roma.Google Scholar
Gedda, L. (1958). Genetica della Tubercolosi e dei Tumori. In: Analecta Genetica. Ed. Ist. Mendel, Roma.Google Scholar
Gedda, L. (1960). Il profilo genetico dell'auxologia. Atti 1° Simp. Med. Auxol. Selecta Medica. Ed. Ist. Mendel, Roma.Google Scholar
Gedda, L. (1966). Studio sui tumori nei gemelli. Il Cancro, 19: 3.Google Scholar
Gedda, L. Brenci, G. (1960). I gemelli come metodo di ricerca in genetica umana. In Gedda, L.: De Genetica Medica, III. Ed. 1st. Mendel, Roma.Google Scholar
Gedda, L. Teodori, U., Bigozzi, U., Brenci, G., Cavalieri, R. (1961). Genetica delle allergopatie. Atti 5° Congr. Soc. Ital. Allergol. Il Pensiero Scientifico, Roma.Google Scholar
Gedda, L. Bolognesi, M., Bandino, R., Brenci, G. (1964). Ricerche di genetica sulla silicosi dei minatori della Sardegna. Lavoro Umano, 16: 555.Google Scholar
Gedda, L. Alfieri, A. (1966). Retinoblastoma in due sorelle mononate e in due gemelle MZ appartenenti alla medesima fratria. Acta Genet. Med. Gemellol., 15: 178.Google Scholar
Gedda, L. Casa, D., Brenci, G. (1967). Chronon and the problem of anticipation. (On two family cases of diabetes). Acta Genet. Med. Gemellol., 16: 217.Google Scholar
Gedda, L. Bolognesi, M., Brenci, G. (1969). Sulla gravidanza protratta. Acta Med. Auxol., 1: 115.Google Scholar
Gedda, L. Cardinali, G., Cardinali, G. (1969). A study of leukocyte alkaline phosphatase (LAP) in twins. Proc. Ist Int. Symp. Twin Studies. (In press).Google Scholar
Gedda, L. Alfieri, A., Lun, M. T., Reggiani, L. (1969). Primary enuresis studied by the twin method. Proc. 1st Int. Symp. Twin Studies. (In press).Google Scholar
Gedda, L., Cavalieri, R., Brenci, G. (1970). Studio del chronon in un campione di famiglie affette da psoriasi. Acta Genet. Med. Gemellol. (In press).Google Scholar
Gedda, L. Del Porto, G., Brenci, G. (1970). Disauxie ereditarie in due famiglie riguardanti rispettivamente il genotipo della fonazione e del capillizio. Acta Med. Auxol. (In press).Google Scholar
Gedda, L. Di Raimondo, F., Brenci, G. (1970). Osservazioni sulla familiarità di insorgenza della malattia ulcerosa. Acta Genet. Med. Gemellol. (In press).Google Scholar
Gonzales, B. M. (1923). The influence upon duration of life of certain mutant genes of Drosophila melanogaster. The American Naturalist, 57: 289.Google Scholar
Greulich, W. W., Idell Pyle, S. (1959). Radiographic Atlas of Skeletal Development of the Hand and Wrist. Stanford University Press, Calif.Google Scholar
Halberg, F. (1967). Interdisciplinary Perspectives of Time. Ann. N. Y. Acad. Sci., Fischer, New York.Google Scholar
Haldane, J. B. S. (1932). The time of action of genes, and its bearing on some evolutionary problems. The American Naturalist, 66: 5.Google Scholar
Harris, M. (1964). Cell Culture and Somatic Variation. Holt, New York.Google Scholar
Hastings, J. W., Keynan, A. (1965). Molecular Aspects of Circadian Systems. Elsevier, Amsterdam.Google Scholar
Hay, R. J. (1967). Cell and tissue culture in aging research. In: Strehler, B. L., 1964.Google Scholar
Hayflick, L., Moorhead, P. S. (1961). Cit. R. J. Hay, 1967.Google Scholar
Hayhoe, F. G. J., Quaglino, D. (1958). Cytochemical demonstration and measurement of leukocyte alkaline phosphatase activity in normal and pathological states by modified dzo-dye couting technique. Brit. Hannal., 4: 375.Google Scholar
Horovitz, S., Osborne, R., De George, F. (1958). Hereditary factors in tooth dimension. A study of the anterior teeth of twins. Angle Orthodont., 28: 8793.Google Scholar
Kallmann, F. J. (1954). Twin data in the analysis of the mechanism of inheritance. Amer. J. Hum. Genet., 6: 157.Google Scholar
Lecomte du Noüy, P. (1939). Il Tempo e la Vita. G. Einaudi, Torino.Google Scholar
Locke, M. (1968). The Emergence of Order in Developing Systems. 27th Symp. Soc. Devel. Biol., Academic Press, New York.Google Scholar
Lundstrom, A. (1948). Tooth Size and Occlusion in Twins. Stronger, Basel.Google Scholar
Luxemburger, H. (1940). Die Zwillingsforschung als Methode der Erbforschung beim Menschen. In Just, G.: Handbuch der Erbbiologie des Menschen. Springer Verlag, Berlin.Google Scholar
Maynard-Smith, J. (1959). The rate of ageing in Drosophila suboscura. In Ciba Foundation: Colloquia on Ageing. Churchill, London.Google Scholar
Medvedev, Zh. A. (1966). Protein Biosynthesis and Problems of Heredity Development and Ageing. Oliver and Boyd, Edinburgh.Google Scholar
Mikal, S. (1967). Homeostasis in Man. Little, Brown and Co., Boston.Google Scholar
Murray, M. R., Kopeck, G. (1953). A Bibliography of the Research in Tissue Culture. Academic Press, New York.Google Scholar
Newmann, H. H., Freeman, F. N., Holzinger, K. S. (1937). Twins: a Study of Heredity and Environment. The University of Chicago Press, Chicago.Google Scholar
Nirenberg, M. W., Jones, O. W., Leder, P., Clark, B. F. C., Sly, W. S., Pestka, S. (1963). On the coding of genetic information. Cold Spring Harbor Symp. Quant. Biol., 28: 549.Google Scholar
Osborne, R., Horovitz, S., De George, F. (1958). Genetic variation in tooth dimension. A twin study of the permanent anterior teeth. Amer. J. Hum. Genet., 10: 350.Google Scholar
Paigen, Ganschow (1965). Cit. Rieger et al, 1968.Google Scholar
Parker, R. C. (1961). Methods of Tissue Culture. Harper, New York.Google Scholar
Paul, J. (1960). Cell and Tissue Culture. Livingstone Ed., Edinburgh.Google Scholar
Pearl, R., Parker, S. L. (1922 a). Hereditary differences in duration of life in line-bred strains in Drosophila. The American Naturalist, 56: 174.Google Scholar
Pearl, R., Parker, S. L. (1922 b). On the influence of certain environmental factors on duration of life of Drosophila. The American Naturalist, 56: 385.Google Scholar
Pittendrigh, C. S. (1960). Circadian rhythms and the circadian organization of living systems. In: Chovnick, A., 1960.Google Scholar
Proceedings of International Symposium on Rhythm (1964). Ed. by Kenna, J. T.. Family Life Bureau, Washington.Google Scholar
Prokofieva-Belgouskaya, A. A. (1966). Nature of association of acroncetric human chromosomes. Citologia, 8: 169.Google Scholar
Prokofieva-Belgouskaya, A. A. (1967). Association of acrocentric chromosomes to cell type. Exp. Cell. Res., 49: 612.CrossRefGoogle Scholar
Puck, T. T., Cierciura, S. J., Robinson, A. (1958). Cit. R. J. Hay, 1967.Google Scholar
Rieger, R., Michaelis, A., Green, M. M. (1968). A Glossary of Genetics and Cytogenetics. Springer-Verlag, Berlin.Google Scholar
Rockstein, M. (1959). The biology of ageing in insects. In Ciba Foundation: Colloquia on Ageing. Churchill, London.Google Scholar
Simpson, G. G. (1964). This View of Life. Harcourt Brace World Inc., New York.Google Scholar
Sonneborn, T. M. (1965). Degeneracy in the genetic code: extent, nature and genetic implications. In Bryson, V. and Vogel, H. J.: Evolving Genes and Proteins. Academic Press, New York.Google Scholar
Strehler, B. L. (1962). Time, Cells and Ageing. Academic Press, New York.Google Scholar
Strehler, B. L. (1964). Advances in Gerontological Research. Academic Press, New York.Google Scholar
Strehler, B. L. Midvan, A. S. (1960). General theory of mortality and aging. Science, 132: 14.Google Scholar
Strong, L. C. (1968). Biological Aspects of Cancer and Aging. Pergamon Press, Oxford.Google Scholar
Swim, H. E., Parker, R. F. (1957). Cit. R. J. Hay, 1967.Google Scholar
Szilard, L. (1959). On the nature of the aging process. Proc. Nat. Acad. Sci. USA, 45: 30.Google Scholar
The Cellular Aspects of Biorhythms (1965). Symposium on Rhythmic Research. Ed. by von Mayersbach, H.. Springer-Verlag, Berlin.Google Scholar
Tocquet, R. (1951). Cycles et Rythmes. Les Heures Scientifiques. Dunod, Ed., Paris.Google Scholar
Topics in the Biology of Ageing (1965). Ed. by Krohn, P. L.. San Diego, Calif.Google Scholar
Watson, J. D. (1965). Molecular Biology of the Gene. W. A. Benjamin, New York.Google Scholar
Verschuer, O. von (1949). Die Zwillingsforschung als Methode der Genetik von Menschen. S.A.S., Bologna.Google Scholar
Walford, R. L. (1969). The Immunologic Theory of Aging. Munksgaard, Copenhagen.Google Scholar
William, A., Kretzschmar, E., Stoddard, J. F. (1969). Modificazioni fisiologiche nella donna anziana. In: Problemi Medici e Chirurgici in Menopausa. Ed. Richter, , Milano.Google Scholar
Willmer, E. N. (1965). Cells and Tissues in Culture. Academic Press, New York.Google Scholar
Wiltshaw, E., Moloney, W. C. (1955). Histochemical and biochemical studies on leukocyte alkaline phosphatase activity. Blood, 10: 1120.Google Scholar
Witkop, C. G. Jr. (1960). Dental genetics. S.A.D.A., 60: 564.Google Scholar
Woese, C. R. (1965). On the evolution of the genetic code. Proc. Nat. Acad. Sci. USA, 54: 1546.Google Scholar
Ycas, M. (1969). The Biological Code. North Holland Publ. Co., Amsterdam.Google Scholar