Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-27T20:52:12.210Z Has data issue: false hasContentIssue false

The Swing Ratio and Game Theory

Published online by Cambridge University Press:  01 August 2014

David Sankoff
Affiliation:
University of Montreal
Koula Mellos
Affiliation:
University of Ottawa

Abstract

We propose a simple game-theory model of single-member plurality electoral systems, two parties with unequal resources being the players. Strategies consist of allocations of resources among the n contests, and a party's payoff is the number of contests to which it has assigned more resources than the other party. Mixed strategies exist which are asymptotically optimal as n increases. Identifying a party's proportion of total resources with its total vote proportion, we predict that the swing ratio, or marginal seat proportion per vote proportion, is 2. This compares to empirical findings which range between 2 and 4, and to the hitherto unexplained cube law, which predicts 3. We suggest that the strategic problem modeled by this game accounts for the major part of the swing ratio effect. Factors which vary from system to system, such as proportion of hard-core support attached to parties, may amplify this effect.

Type
Articles
Copyright
Copyright © American Political Science Association 1972

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Kendall, M. G. and Stuart, A., “The Law of the Cubic Proportion in Election Results,” British Journal of Sociology, 1 (09, 1950) 183197 CrossRefGoogle Scholar.

2 May, J. G., “Party Legislative Representation as a Function of Election Results,” Public Opinion Quarterly, 21 (Winter, 19571958), 521542 Google Scholar.

3 Kendall and Stuart, “The Law of the Cubic Proportion …”

4 A recent study which assumes the cube law is Theil, Henri, “The Cube Law Revisited,” Journal of the American Statistical Association, 65 (09, 1970) 12131219 CrossRefGoogle Scholar.

5 March, “Party Legislative Representation …”

6 Owen, G., Game Theory (Philadelphia: W. B. Saunders, 1968), pp. 8893 Google Scholar.

7 We would like to thank Professors Mark Kac, Jean-Jacques Moreau, and Frank Stenger for advice, and Professor Guillermo Owen for information about this type of game. As far as possible we shall keep to the terminology and notation of Owen, Game Theory.

8 Optimal strategies exist if

in which case v is called the value of the game.

9 Thiel, “The Cube Law Revisited,” shows one way of doing this.

Submit a response

Comments

No Comments have been published for this article.