Published online by Cambridge University Press: 30 October 2009
Soil erosion is a major threat to sustaining agricultural production in Tanzania. However, quantitative information is scanty on its effects on yields of major crops for principal soils and management practices. We conducted this study to determine erosion effects on soil moisture, related properties and corn yield on Tropeptic Haplustox and Ultic Haplustalf soils at Mlingano in Tanzania. Four erosion classes (least, slight, moderate, and severe) on Tropeptic Haplustox and three erosion classes (slight, moderate, and severe) on Ultic Haplustalf were established according to the thickness of the Ap horizon under natural field conditions. Accelerated soil erosion reduced soil moisture content, soil organic carbon, available water capacity and water use efficiency. Mean volumetric soil moisture content (average of both soils) during the growing season was 23.3% for severe, 24.8% for moderate, and 25.7% for slight erosion. Mean soil organic carbon content was 1.15% for severe, 1.64% for moderate and 1.97% for slight erosion. Mean available water capacity was 2.6 cm for severe, 3.5 cm for moderate, and 4.0 cm for slight erosion. Soil bulk density and excessive degree days of soil temperature above 25°C increased with severity of erosion. These adverse changes accentuated constraints on crop growth and reduced corn (Zea mays) yield on severely eroded soil by 45% and 59% for Tropeptic Haplustox and Ultic Haplustalf soils, respectively. The water use efficiency of corn was 21.6 kg ha-1 cm-1 in the least eroded class versus 17 kg ha-1 cm-1 in the severely eroded class for the Tropeptic Haplustox, and 23 kg ha-1 cm-1 in the slightly eroded and 18.1 kg ha-1 cm-1 in the severely eroded class for Ultic Haplustalf.