Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-30T15:09:58.589Z Has data issue: false hasContentIssue false

The Potential of Bulk δ13C on Encrusted Cooking Residues as Independent Evidence for Regional Maize Histories

Published online by Cambridge University Press:  20 January 2017

John P. Hart
Affiliation:
Research and Collections Division, New York State Museum, 3140Cultural Education Center, Albany, NY 12230 ([email protected])
William A. Lovis
Affiliation:
Department of Anthropology and Michigan State University Museum, 355 Baker Hall, Michigan State University, East Lansing, MI 48824 ([email protected])
Robert J. Jeske
Affiliation:
Department of Anthropology, University of Wisconsin-Milwaukee, 290 Sabin Hall, P.O. Box 413, 3413 N. Downer Ave., Milwaukee, WI 53201 ([email protected])

Abstract

The histories of maize utilization in eastern North America have been substantially revised recently, primarily because of the analysis of charred cooking residues encrusted on pottery. A multifaceted research strategy of bulk δ13C assays coupled with accelerator mass spectrometry radiocarbon data and microbotanical evidence can yield coherent regional maize use histories. Bulk δ13 C assay interpretation complications include (1) variations among vessels by site, (2) a potential for false negatives, and (3) a wide range of variation potentially present for any given time period. Regional histories using this approach can be quite variable without appropriate use of multiple lines of evidence.

Resumen

Resumen

Las historias de la utilización del maíz en el este de Norteamérica han sido revisadas considerablemente en años recientes debido principalmente a los análisis de residuos carbonizados que se encuentran incrustados al interior de tiestos de cerámica. Una estrategia multifacética de investigación de los valores del cúmulo de δ13C junto con datos de radiocarbono AMS, así como evidencia microbotánica, puede proporcionar historias coherentes del uso del maíz en la región. La interpretación de la prueba del cúmulo de δ13C se complica debido al) variaciones entre vasijas por sitio, 2) el potencial de negativos falsos, y 3) un amplio rango de variabilidad potencialmente presente durante cualquier período de tiempo. Historias regionales que utilicen este método pueden resultar bastante variables sin el uso apropiado de múltiples líneas de evidencia.

Type
Reports
Copyright
Copyright © The Society for American Archaeology 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References Cited

Beld, Scott G. 1993 Site 20IA37 (Arthurburg Hill Earthworks), Lyons Township, Ionia County, Michigan. In Lyons Township Archaeological Survey, S-92-313, edited by S. G. Beld, pp. 382. Archaeological Survey Completion Report submitted to the Michigan Office of the State Archaeologist, Alma College, Alma, Michigan. Report on file at the Office of the State Archaeologists, Michigan Department of History, Arts and Libraries, Lansing, Michigan.Google Scholar
Boyd, Matthew, and Surette, Clarence 2010 Northernmost Precontact Maize in North America. American Antiquity 75:117133.Google Scholar
Branstner, Mark G., and Hambacher, Michael J. 1995 1991 Great Lakes Gas Transmission Limited Partnership pipeline expansion projects: Phase III investigations at the Cassasa [i.e. Casassa] site (20SA1021), Saginaw County, Michigan. Report No. 95-01. Report submitted to the Federal Energy Regulatory Commission and the Michigan State Historic Preservation Officer. Great Lakes Research Associates, Inc., Williamston, Michigan.Google Scholar
Brashler, Janet G., Hambacher, Michael J., Martin, Terrance J., Parker, Katherine E., and Robertson, James A. 2006 Middle Woodland Occupation in the Grand River Basin of Michigan. In Recreating Hopewell, edited by Douglas K. Charles and Jane E. Buikstra, pp. 261284. University Press of Florida, Gainesville.Google Scholar
Harrison, Roman G., and Anne Katzenberg, M. 2003 Paleodiet Studies Using Stable Carbon Isotopes from Bone Apatite and Collagen: Examples from Southern Ontario and San Nicolas Island, California. Journal of Archaeological Science 22:227244.Google Scholar
Hart, John P. 1999 Maize Agriculture Evolution in the Eastern Woodlands of North America: A Darwinian Perspective. Journal of Archaeological Method and Theory 6:137180.Google Scholar
Hart, John P. 2008 Evolving the Three Sisters: The Changing Histories of Maize, Bean, and Squash in New York and the Greater Northeast. In Current Northeast Paleoethnohotany II, edited by John P. Hart, pp. 8799. New York State Museum Bulletin 512. University of the State of New York, Albany.Google Scholar
Hart, John P. (editor) 2008 Current Northeast Paleoethnobotany II. New York State Museum Bulletin 512. University of the State of New York, Albany.Google Scholar
Hart, John P., Brumbach, Betty Jo, and Lusteck, Robert 2007a Extending the Phytolith Evidence for Early Maize (Zea mays ssp. mays) and Squash (Cucurbita sp.) in Central New York. American Antiquity 72:563583.Google Scholar
Hart, John P., Lovis, William A., Schulenberg, Janet K., and Urquhart, Gerald R. 2007b Paleodietary Implications from Stable Carbon Isotope Analysis of Experimental Cooking Residues. Journal of Archaeological Science 34:804813.Google Scholar
Hart, John P., and Matson, R. G. 2009 The Use of Multiple Discriminant Analysis in Classifying Prehistoric Phytolith Assemblages Recovered from Cooking Residues. Journal of Archaeological Science 36:7483.Google Scholar
Hart, John P., Thompson, Robert G., and Brumbach, Betty Jo 2003 Phytolith Evidence for Early Maize (Zea mays) in the Northern Fi nger Lakes Region of New York. American Antiquity 68:619640.CrossRefGoogle Scholar
Hart, John P., Urquhart, Gerald R., Feranec, Robert S., and Lovis, William A. 2009 Nonlinear Relationship Between Bulk δ13C and Percent Maize in Carbonized Cooking Residues and the Potential of False Negatives in Detecting Maize. Journal of Archaeological Science 36:22062212.Google Scholar
Hastorf, Christine A., and DeNiro, Michael J. 1985 Reconstruction of Prehistoric Plant Production and Cooking Practices by a New Isotope Method. Nature 315:489491.Google Scholar
Jeske, Robert J., and Richards, John D. 2010 A New and Improved Wisconsin Woodland Chronology from Wisconsin: Dates from Organic Residues on Ceramic Vessels. Paper presented at the 75th Annual Meeting of the Society for American Archaeology, St. Louis, Missouri.Google Scholar
Lovis, William A. 1990 Curatorial Considerations for Systematic Research Collections: AMS Dating of a Curated Ceramic Assemblage. American Antiquity 55:382387.Google Scholar
Messner, Timothy C., Dickau, Ruth, and Harbison, Jeff 2008 Starch Grain Analysis: Methodology and Applications in the Northeast. In Current Northeast Paleoethnobotany II, edited by John P. Hart, pp. 111127. New York State Museum Bulletin 512. University of the State of New York, Albany.Google Scholar
Morton, June D., and Schwarcz, Henry P. 2004 Paleodietary Implications from Stable Isotopic Analysis of Residues on Prehistoric Ontario Ceramics. Journal of Archaeological Science 31:503517.CrossRefGoogle Scholar
Parker, Kathryn E. 1996 Three Corn Kernels and a Hill of Beans: The Evidence for Prehistoric Horticulture in Michigan. In Investigating the Archeological Record of the Great Lakes State: Essays in Honor of Elizabeth Baldwin Garland, edited by Margaret B. Holman, Janet G. Brashler, and Kathryn E. Parker, pp. 307339. New Issues Press, Kalamazoo.Google Scholar
Raviele, Maria E. 2010 Assessing Carbonized Archaeological Cooking Residues: Evaluation of Maize Phytolith Taphonomy and Density Through Experimental Residue Analysis. Unpublished Ph.D. dissertation, Department of Anthropology, Michigan State University, East Lansing.Google Scholar
Rice, Prudence M. 1987 Pottery Analysis: A Sourcebook. University of Chicago Press, Chicago.Google Scholar
Rose, Fionnuala 2008 Intra-Community Variation in Diet During the Adoption of a New Staple Crop in the Eastern Woodlands. American Antiquity 73:413439.CrossRefGoogle Scholar
Seinfeld, Daniel, van Nagy, Christopher, and Pohl, Mary D. 2009 Determining Olmec Maize Use Through Bulk Stable Carbon Isotope Analysis. Journal of Archaeological Science 31:25602565.CrossRefGoogle Scholar
Skibo, James M. 1992 Pottery Function: A Use-Alteration Perspective. Plenum Press, New York.Google Scholar
Sommer, Jeffrey D. 2003 A Middle Woodland AMS Date from Saginaw County, Michigan. The MichiganArchaeologist 49(3-4):8795.Google Scholar
Staller, John E., Tykot, Robert H., and Benx, Bruce F. (editors) 2006 Histories of Maize: Multidisciplinary Approaches to the Prehistory, Linguistics, Biogeography, Domestication, and Evolution of Maize. Academic Press, Burlington, Massachusetts.Google Scholar