Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-25T08:10:34.909Z Has data issue: false hasContentIssue false

New Perspectives on Experimental Archaeology: Surface Treatments and Thermal Response of the Clay Cooking Pot

Published online by Cambridge University Press:  20 January 2017

Michael Brian Schiffer
Affiliation:
Laboratory of Traditional Technology, Department of Anthropology, University of Arizona, Tucson, AZ 85721
James M. Skibo
Affiliation:
Department of Sociology and Anthropology, Illinois State University, Normal, IL 61761
Tamara C. Boelke
Affiliation:
Laboratory of Traditional Technology, Department of Anthropology, University of Arizona, Tucson, AZ 85721
Mark A. Neupert
Affiliation:
Laboratory of Traditional Technology, Department of Anthropology, University of Arizona, Tucson, AZ 85721
Meredith Aronson
Affiliation:
Department of Materials Science and Engineering, University of Arizona, Tucson, AZ 85721

Abstract

This paper examines pottery technology and change through the eyes of the experimental archaeologist. A new vision is presented of experimental archaeology and the role its findings can play in archaeological explanation. It is argued that the most useful results of experimental archaeology are best obtained with long-term research programs. This perspective is illustrated by a case study of the relations between surface treatments (interior and exterior) and thermal performance in cooking pots. The experiments indicate that surface treatments like texturing, organic coatings, and smudging have marked impacts on thermal shock cracking and on thermal spalling in simulated cooking. It is emphasized that the findings of experimental archaeology, expressed as correlates, can be employed in explanations of prehistoric technological change, but only when embedded in more inclusive correlate theories and coupled with the requisite contextual information.

Resumen

Resumen

Este artículo examina la tecnología cerámica y su cambio a través de los ojos del arqueólogo experimental. Se presenta una nueva visión de la arqueología experimental y el rol que sus hallazgos pueden tener en la explicación arqueológica. Se arguye que los resultados más útiles de la arqueología experimental se obtienen con programas de investigación a largo plazo. Un estudio de caso sobre la relación entre tratamientos de superficie (interior y exterior) y funcionamiento termal en vasijas de cocina ilustra esta perspectiva. Los experimentos indican que tratamientos de superficie tales como texturas, engobes orgánicos y ahumados, tuvieron impacto en la aparición de fisuras por shock termal y descascarillado termal en la cocción simulada. Se enfatiza que los hallazgos de la arqueología experimental, expresados como correlaciones, pueden ser empleados en las explicaciones del cambio tecnológico prehistorico, pero sólo cuando están embebidos en teorías de correlación más inclusivas y disponen de la necesaria información contextual.

Type
Articles
Copyright
Copyright © The Society for American Archaeology 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References Cited

Amberg, C. R., and Hartsook, J. 1946 Effect of Design Factors on Thermal-Shock Resistance of Cooking Ware. American Ceramic Society Bulletin 25 : 448452.Google Scholar
Ascher, R. 1961 Experimental Archeology. American Anthropologist 63 : 793816.CrossRefGoogle Scholar
Bleed, P. 1986 The Optimal Design of Hunting Weapons : Maintainability or Reliability. American Antiquity 51 : 737— 747.Google Scholar
Braun, D. 1983 Pots as Tools. In Archaeological Hammers and Theories, edited by Keene, A. and Moore, J., pp. 107134. Academic Press, New York.CrossRefGoogle Scholar
Bronitsky, G. 1986 The Use of Materials Science Techniques in the Study of Pottery Construction and Use. In Advances in Archaeological Method and Theory, vol. 9, edited by Schiffer, M. B., pp. 209276. Academic Press, Orlando.CrossRefGoogle Scholar
Bronitsky, G., and Hamer, R. 1986 Experiments in Ceramic Technology : The Effects of Various Tempering Material on Impact and Thermal Shock Resistance. American Antiquity 51 : 89101.Google Scholar
Coles, J. 1979 Experimental Archaeology. Academic Press, New York.Google Scholar
Crabtree, D. E. 1968 Mesoamerican Polyhedral Cores and Prismatic Blades. American Antiquity 33 : 446478.CrossRefGoogle Scholar
Fournier, P. 1989 Surface Treatment and Strength of Low-Fired Ceramic Bodies : An Experimental Study. Unpublished Master's thesis, Department of Anthropology, University of Arizona, Tucson.Google Scholar
Fournier, P. 1990 Un estudio sobre arqueologia experimental : Efectos de acabados de superficie en la resistencia a la ruptura de cuerpos ceramicos. Instituto Panamericano de Geografia e Historia, Boletin de A ntropologia Americana 21 : 103128.Google Scholar
Gif Ford, J. C, and Smith, W. 1978 Gray Corrugated Pottery from Awatovi and Other Jeddito Sites in Northeastern Arizona. Papers of the Peabody Museum No. 67. Harvard University Press, Cambridge, Massachusetts.Google Scholar
Gilman, P. A. 1987 Architecture as Artifact. American Antiquity 52 : 538564.CrossRefGoogle Scholar
Goodyear, A. C. 1989 A Hypothesis for the Use of Cryptocrystalline Raw Materials Among Paleoindian Groups of North America. In Eastern Paleoindian Lithic Resource Use, edited by Ellis, C. J. and Lothrop, J. C., pp. 119. Westview Press, Boulder, Colorado.Google Scholar
Hally, D. 1983 Use Alteration of Pottery Vessel Surfaces : An Important Source of Evidence for the Identification of Vessel Function. North American Archaeologist 4 : 326.Google Scholar
Hally, D. 1986 The Identification of Vessel Function : A Case Study From Northwest Georgia. American Antiquity 51 : 267295.CrossRefGoogle Scholar
Hasselman, D. P. H. 1970 Thermal Stress Resistance Parameters for Brittle Refractory Ceramics : A Compendium. American Ceramic Society Bulletin 49 : 10331037.Google Scholar
Hayden, B. 1981 Research and Development in the Stone Age : Technological Transitions Among Hunter-Gatherers. Current Anthropology 22 : 519548.Google Scholar
Heidke, J., and Elson, M. D. 1988 Tucson Basin Stucco-Coated Plain Ware : A Technological Assessment. The Kiva 53 : 273285.Google Scholar
Herron, M. K. 1986 A Formal and Functional Analysis of St. Johns Series Pottery from Two Sites in St. Augustine, Florida. In Ceramic Notes 3, Occasional Publications of the Ceramic Technology Laboratory, edited by Rice, P., pp. 3145. Florida State Museum, Gainesville.Google Scholar
Kingery, W. D. 1955 Factors Affecting Thermal Stress Resistance of Ceramic Materials. Journal of the American Ceramic Society 38 : 315.CrossRefGoogle Scholar
Kingery, W. D. 1960 Introduction to Ceramics. Wiley, New York.Google Scholar
Longacre, W. A. 1981 Kalinga Pottery : An Ethnoarchaeological Study. In Patterns of the Past : Studies in Honour of David Clarke, edited by Hodder, I., Isaac, G, and Hammond, N., pp. 4966. Cambridge University Press, London.Google Scholar
Longacre, W. A., and Skibo, J. M. (editors) 1994 Kalinga Ethnoarchaeology : Expanding Archaeological Method and Theory. Smithsonian Institution Press, Washington, D. C., in press.Google Scholar
Longacre, W. A., Skibo, J. M., and Stark, M. T. 1991 Ethnoarchaeology at the Top of the World. Expedition 33 : 415.Google Scholar
Mabry, J., Skibo, J. M., Schiffer, M. B., and Kvamme, K. 1988 Use of a Falling-Weight Tester for Assessing Ceramic Impact Strength. American Antiquity 53 : 829839.CrossRefGoogle Scholar
McGregor, J. C. 1965 Southwestern Archaeology. 2nd ed. University of Illinois Press, Urbana.Google Scholar
Neff, H. 1992 Ceramics and Evolution. In Archaeological Method and Theory, vol. 4, edited by Schif Fer, M. B., pp. 141193. University of Arizona Press, Tucson.Google Scholar
Nelson, M. C. 1991 The Study of Technological Organization. In Archaeological Method and Theory, vol. 3, edited by Schif Fer, M. B., pp. 57100. University of Arizona Press, Tucson.Google Scholar
Neupert, M. A. 1993 Strength Analysis of the Transwestern Ceramic Assemblage. In Ceramic Interpretations, edited by Mills, B. J., Goetze, C. E., and Zedeiio, M. N., pp. 279300. Across the Colorado Plateau : Anthropological Studies Along the San Juan Basin and Transwestern Mainline Expansion Pipeline Routes, vol. 16. Office of Contract Archeology and the Maxwell Museum of Anthropology, University of New Mexico, Albuquerque.Google Scholar
Reid, J. J., Schiffer, M. B., and Rathje, W. L. 1975 Behavioral Archaeology : Four Strategies. American Anthropologist 77 : 864869.Google Scholar
Reid, K. C. 1990 Simmering Down : A Second Look at Ralph Linton's ‘North American Cooking Pots.’ Nevada State Museum Anthropological Papers 23 : 818. Reno.Google Scholar
Rice, P. M. 1987 Pottery Analysis : A Sourcebook. University of Chicago Press, Chicago.Google Scholar
Ritter, J. E., Jakus, K., Batakis, A., and Bandyopadhyay, N. 1980 Appraisal of Biaxial Strength Testing. Journal of Noncrystalline Solids 38-39 : 419424.Google Scholar
Rye, O. S. 1981 Pottery Technology : Principles and Reconstruction. Taraxacum, Washington, D. C. Google Scholar
Salmang, H. 1961 Ceramics : Physical and Chemical Fundamentals. Butterworths, London.Google Scholar
Schiffer, M. B. 1975 Archaeology as Behavioral Science. American Anthropologist 77 : 836848.CrossRefGoogle Scholar
Schiffer, M. B. 1976 Behavioral Archeology. Academic Press, New York.Google Scholar
Schiffer, M. B. 1988 The Effects of Surface Treatment on Permeability and Evaporative Cooling Effectiveness of Pottery. In Proceedings of the 26th International Archaeometry Symposium, edited by Farquhar, R. M., Hancock, R. G. V, and Pavlish, L. A., pp. 2329. Archaeometry Laboratory, Department of Physics, University of Toronto, Toronto.Google Scholar
Schiffer, M. B. 1989 A Research Design for Ceramic Use-Wear Analysis at Grasshopper Pueblo. In Pottery Technology : Ideas and Approaches, edited by Bronitsky, G., pp. 183205. Westview Press, Boulder, Colorado.Google Scholar
Schiffer, M. B. 1990a The Influence of Surface Treatment on Heating Effectiveness of Ceramic Vessels. Journal of Archaeological Science 17 : 373381.CrossRefGoogle Scholar
Schiffer, M. B. 1990b Technological Change in Water-Storage and Cooking Pots : Some Predictions From Experiments. In The Changing Roles of Ceramics in Spciety : 26, 000 B. P. to The Present, edited by Kingery, W. D., pp. 119136. American Ceramic Society, Westerville, Ohio.Google Scholar
Schiffer, M. B. 1991 The Portable Radio in American Life. University of Arizona Press, Tucson.Google Scholar
Schiffer, M. B. 1992 Technological Perspectives on Behavioral Change. University of Arizona Press, Tucson.Google Scholar
Schiffer, M. B. 1994 Taking Charge : The Electric Automobile in America [tentative title]. Smithsonian Institution Press, Washington, D. C., in press.Google Scholar
Schiffer, M. B., and Skibo, J. M. 1987 Theory and Experiment in the Study of Technological Change. Current Anthropology 28 : 595622.Google Scholar
Schiffer, M. B., and Skibo, J. M. 1989 A Provisional Theory of Ceramic Abrasion. American Anthropologist 91 : 101115.CrossRefGoogle Scholar
Searle, A. B., and Grimshaw, R. W. 1959 The Chemistry and Physics of Clays and Other Ceramic Materials. 3rd ed. Interscience Publishers, New York.Google Scholar
Skibo, J. M. 1992 Pottery Function : A Use-Alteration Perspective. Plenum, New York.CrossRefGoogle Scholar
Skibo, J. M., Schiffer, M. B., and Reid, K. C. 1989 Organic-Tempered Pottery : An Experimental Study. American Antiquity 54 : 122146.CrossRefGoogle Scholar
Tringham, R. 1978 Experimentation, Ethnoarchaeology, and the Leapfrogs in Archaeological Methodology. In Explorations in Ethnoarchaeology, edited by Gould, R. A., pp. 169199. University of New Mexico Press, Albuquerque.Google Scholar
Wahlman, M. 1972 Yoruba Pottery-Making Techniques. Baessler-Archive (N. F.) 20 : 313346.Google Scholar
Waters, M. R. 1982 The Lowland Patayan Ceramic Typology. In Hohokam and Patayan : Prehistory of Southwestern Arizona, edited by H. McGuire, Randall and Schiffer, Michael B., pp. 537570. Academic Press, New York.Google Scholar
West, S. M. 1992 Temper, Thermal Shock, and Cooking Pots : A Study of Tempering Materials and Their Physical Significance in Prehistoric and Traditional Cooking Pottery. Unpublished Master's thesis, Department of Materials Science and Engineering, University of Arizona, Tucson.Google Scholar
Vaz Pinto, I., Schiffer, M. B., Smith, S., and Skibo, J. M. 1987 Effects of Temper on Ceramic Abrasion Resistance : A Preliminary Investigation. Archaeomaterials 1 : 119134.Google Scholar
Young, L. C, and Stone, T. 1990 The Thermal Properties of Textured Ceramics : An Experimental Study. Journal of Field Archaeology 17 : 195203.Google Scholar