Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-18T16:04:17.413Z Has data issue: false hasContentIssue false

The Identification of Granitic Fire-Cracked Rocks Using Luminescence of Alkali Feldspars

Published online by Cambridge University Press:  20 January 2017

George (Rip) Rapp Jr.
Affiliation:
University of Minnesota, Duluth, MN 55812
Sanda Balescu
Affiliation:
Department of Earth Sciences, University of Québec in Montréal, Montréal H3C 3P8. Canada
Michel Lamothe
Affiliation:
Department of Earth Sciences, University of Québec in Montréal, Montréal H3C 3P8. Canada

Abstract

The question of Fire-Cracked Rock (FCR) in Woodland contexts has become an important and controversial topic in Western Great Lakes archaeology. There are no clear and widely accepted criteria for distinguishing FCR when the rocks show no observable characteristics associated with fire (heating and cooling). To help overcome this shortcoming, we analyzed both the thermoluminescence (TL) and the optically stimulated luminescence (OSL) of alkali feldspar grains from a series of six samples of FCR from the Hannaford site in northern Minnesota. A geologic unheated specimen from the same geographic area was used as a control sample. A comparison of the luminescence (TL and OSL) intensities of both natural and natural plus artificial dose signals allowed us to demonstrate that the six selected samples of FCR had been effectively heated at the time of archaeological settlement. The good agreement between the TL and OSL results suggests that the OSL method is a viable alternative to TL for the identification of FCR. The OSL method requires less material, can be applied to a large number of samples, and is more cost-effective.

Résumé

Résumé

La cuestioón de Piedra Agrietada por Fuego (FCR) en los contextos de bosques ha llegado a ser un tema importante y de controversia en la arquelogía de los Grandes Lagos Occidentales. No existen criterios claws y ampliamente aceptados para determinar FCR cuando las piedras no muestran ninguna característica observable asociada con fuego (calentar y enfriar). Para ayudar encontrar una solución a este problema analizamos ambas la termoluminiscencia (TL) y la luminiscencia estimulada opticamente (OSL) de los granos de feldespato alcalino de una serie de seis muestras de FCR del yacimiento Hannaford ubicado en el norte de Minnesota (EE. UU.). Un espécimen geológico sin calentar proveniente de la misma zona geográfica se empleó como modelo de control. Una comparación de las intensidades luminiscentes (TL y OSL) naturales y de éstas combinadas con señales de dosis artificial nos permitió demonstrar que las seis muestras seleccionadas de FCR habían sido calentadas, efectivamente, en la época de asentamiento arquelógico. El buen acuerdo entre los resultados de TL y de OSL sugiere que el método OSL representa una alternativa viable de TL para la identificatión de FCR. El método OSL requiere menos material, puede aplicarse a un gran número de muestras, y es más rentable.

Type
Reports
Copyright
Copyright © The Society for American Archaeology 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References Cited

Aitken, M. J. 1985 Thermoluminescence Dating. London: Academic Press.Google Scholar
Balescu, S., Lamothe, M., and Lautridou., J. P. 1997 Luminescence Evidence for Two Middle Pleistocene Interglacial Events at Tourville, Northwestern France. Boreas 26: 6172.Google Scholar
Benchley, E., Marcucci, D., Yuen, C-Y, and Griffin, K. 1988 Final Report of Archaeological Investigations and Data Recovery at the Trout Point I Site, Alger County, Michigan. Report to the U. S. Forest Service. Report of Investigations # 89. University of Wisconsin-Milwaukee Archaeological Research Laboratory, Milwaukee.Google Scholar
Birk, D. A. 1994 FCR Is More Than It's Cracked Up To Be: A Revealing Glimpse of Ancient Native American Cuisine. Institute for Minnesota Archaeology Quarterly Newsletter 9: 46.Google Scholar
Caine, C A. H., and Goltz., G. 1994 Report of Field Excavations 21KC25, The Hannaford Site. Manuscript on file, Minnesota Department of Transportation, St. Paul.Google Scholar
Cook, R. A. 1995 Long-Term Upland Wild-Resource Subsistence Technology: Evidence from Fire-Cracked Rock Piles in the Upper Basin, Kaibab National Forest, Northern Arizona. Unpublished Master's thesis, McMicken College of Arts and Sciences, University of Cincinnati.Google Scholar
Duller, G. A. T. 1991 Equivalent Dose Determination Using Single Aliquots. Nuclear Tracks and Radiation Measurements 18: 371378.Google Scholar
Habib, S. S. 1991 Prehistoric Fire-Cracked Rock Features of Long Island, New York. Unpublished Master's thesis, State University of New York at Stony Brook.Google Scholar
House, J. H., and Smith, J. W.. 1975 Experiments in the Replication of Fire-cracked Rock. In The Cache River Archaeological Project, edited by Schiffer, M. B. and House, J.H., pp 7580. Research Series 8, Arkansas Archaeological Survey.Google Scholar
Huntley, D. J., Godfrey-Smith, D. I., and Trewalt, M. L. W. 1985 Optical Dating of Sediments. Nature 313: 105107.Google Scholar
James, S. R. 1989 Hominid Use of Fire in Lower and Middle Pleistocene: A Review of the Evidence. Current Anthropology 30: 126.Google Scholar
Kritzer, K. N. 1995 Thermolithofratography: A Comparative Analysis of Cracked Rock from an Archaeological Site and Cracked Rock from a Culturally-Sterile Area, or All ‘R’ is FCR Unless It's a Manuport. Unpublished Master's thesis, Ball State University, Muncie, Indiana.Google Scholar
Li, S. H. 1991 Removal of the Thermally Unstable Signal in Optical Dating of K-Feldspar. Ancient TL 9: 2629.Google Scholar
Lovick, S. K. 1983 Fire-Cracked Rock as Tools: Wear Pattern Analysis. Plains Anthropologist 28: 4152.Google Scholar
Meinholz, N. M., and Kuehn, S. R. 1996 The Deadman Slough Site. Archaeological Research Series 4. Museum Archaeology Program, State Historical Society of Wisconsin, Madison.Google Scholar
Mejdahl, V. 1983 Feldspar Inclusion Dating of Ceramics and Burnt Stone. PACT News 9: 351364.Google Scholar
Mejdahl, V. 1985 TL Dating Based on Feldspar. Nuclear Tracks and Radiation Measurements 10: 133136.Google Scholar
Mejdahl, V., and Boetter-Jensen, L. 1994 Luminescence Dating of Archaeological Materials Using a New Technique Based on Single Aliquot Measurements. Quaternary Science Review 13: 551.Google Scholar
Plachy, A. L., and Sutton, S. R. 1982 Determination of the Dose-rate to Quartz in Granite. PACT 6: 188194.Google Scholar
Rapp, G. R. Jr., Mulholland, S.C., Mulholland, S.L., Jing,, Z. 1995 Final Report: Hannaford Data Recovery Project. Koochiching County, Minnesota S. P. 3604-46 (T.H. 11), SHPO Number 93-0163. 2 Volumes. Archaeometry Laboratory, University of Minnesota, Duluth.Google Scholar
Taggart, D. W. 1981 Notes on the Comparative Study of Fire-Cracked Rock. In Report of the Phase I and II Archaeological Survey of Proposed M-275 Right-of-Way Through Western Oakland County, Michigan, edited by Ozker, D. and Taggart, D.W. pp. 142152. Manuscript on file, Michigan History Division, Michigan Department of State, and the Michigan Department of Transportation.Google Scholar
Valladas, H. 1978 Thermoluminescence Dating of Burnt Stones from a Prehistoric Site. R4Cr2: 180183.Google Scholar
Wendt, D. 1988 Application of Shovel Testing and Spatial Analysis to a Disturbed Limited Activity Woodland Site in Anoka County, Minnesota. The Minnesota Archaeologist 47: 333.Google Scholar
Zurel, R. 1979 Brief Comments Regarding the Nature of Fire-Cracked Rock on Aboriginal Sites in the Great Lakes Area. Working Papers in Archaeology 3. Laboratory of Archaeology. Oakland University, Rochester, Michigan.Google Scholar