Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-28T03:45:29.615Z Has data issue: false hasContentIssue false

Estimating the Minimum Number of Skeletal Elements (MNE) in Zooarchaeology: A Review and a New Image-Analysis GIS Approach

Published online by Cambridge University Press:  20 January 2017

Curtis W. Marean
Affiliation:
Department of Anthropology, SUNY at Stony Brook, Stony Brook, NY 11794-4364
Yoshiko Abe
Affiliation:
Interdepartmental Doctoral Program in Anthropological Sciences, SUNY at Stony Brook, Stony Brook, NY 11794-4364
Peter J. Nilssen
Affiliation:
Department of Archaeology, South African Museum, P.O. Box 61, Cape Town, 8000, South Africa
Elizabeth C. Stone
Affiliation:
Department of Anthropology, SUNY at Stony Brook, Stony Brook, NY 11794-4364

Abstract

Most zooarchaeologists employ some type of derived measure of skeletal element abundance in their analyses of faunal data. The minimum number of individuals (MNI) and the minimum number of animal units (MAU) are two of the most popular derived measurements, and each is based on a prior estimate of the minimum number of elements (MNE). Thus, the estimate of MNE from fragmented faunal fragments is the essential foundation for all inferences emanating from MNI and MAU estimates of skeletal element abundance. Estimating the MNE represented by a sample of faunal fragments is a complicated procedure that involves various assumptions, possible mathematical manipulations, and subjectivity. Unfortunately, the reasoning and methods underlying this procedure are unstandardized in zooarchaeology, and even worse, rarely made explicit. We review the scarce literature on this topic and identify two different approaches: the fraction summation approach and the overlap approach. We identify strengths and weaknesses in both approaches. We then present a new method that is based on using image-analysis GIS software to count overlapping fragments that have been converted to pixel images. This method maintains the strengths of the other methods while overcoming most of their weaknesses. It promises numerous powerful analytical capabilities that go far beyond the routines available in spreadsheets and databases. It also offers nearly boundless flexibility in database recoding and extremely complete information storage. Perhaps its greatest strength is that it is based on very intuitive reasoning.

Résumé

Résumé

La mayoría de los zooarqueólogos usan algún tipo de medida derivada de la abundancia de elementos esqueletales cuando analizan restos faunisticos. El núméro mlnimo de individuos (MNI) y las unidades anatómicas mlnimas (MAU) son las medidas derivadas más usadas, y ambas estan basadas en una estimación previa del minimo núméro de elementos (MNE). Por lo tanto, la estimation de los MNE es la base fondamental de las inferencias que se hacen cuando se usan las estimaciones de abundancias faunisticas, tale como los MNI y MAU. La estimation del MNE, que représenta un registre faunistico fragmentado, es un procedimiento complejo que involucra varias suposiciones, posibles manipulaciones matemáticas y subjetividad. Desafortunada-mente, la lógica y métodos que soporta este procedimiento no estan estandarizados en zooarqueologia. Más aun, estos procedimientos son rara vez presentados en forma explicita. En este artícule, nosotros révisámes la escaza literatura disponible acerca de este tópico, y a través de está identificamos dos acercamientos distintos. Estos acercamientos son los siguientes: el método de la sumatoria de las fracciones y el método del traslapamiento. Una vez identificados los puntos fuertes yflaquezas de estos dos métodos, nosotros présentámes un nuevo método basado en el uso de análisis de imágenes con un programa de GIS. Con este método cuantificamos el núméro de fragmentas faunisticos que tienen caracteristicas morfológicas en común (traslapamiento), y cuyas imágenes han sido convertidas en un formate pixel. Nosotros afirmamos que este tercer método retiene los puntos fuertes a la vez que sobrelleva la mayoria de lasflaquezas de los dos métodos anteriores. Este método nuevo promete habilidades analiticas poderosas que van más allá de las rutinas disponibles en programas de planilla de cálculo y de base de datas. Además, este método nuevo ofrece unaftexibilidad sin límites en la generation de bases de datos junto con un almacenamiento completisimo de observaciones. Tal vez, su mayor ventaja es que está basado en una lógica intuitiva transparente.

Type
Reports
Copyright
Copyright © The Society for American Archaeology 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References Cited

Abe, Y., Marean, C. W., Nilssen, P., and Stone, E. 2000 Taphonomy And Zooarchaeology of the Die Kelders Cave 1 Middle Stone Age Large Mammal Remains. Paper presented at the Annual Meeting of the Paleoanthropology Society, Philadelphia.Google Scholar
Bartram, L. E. 1993 An Ethnoarchaeological Analysis of Kua San (Botswana) Bone Food Refuse. Unpublished Ph.D. Dissertation, Department of Anthropology, University of Wisconsin, Madison.Google Scholar
Bartram, L. E., and Marean, C. W. 1999 Explaining the “Klasies Pattern“ : Kua Ethnoarchaeology, the Die Kelders Middle Stone Age Archaeofauna, Long Bone Fragmentation and Carnivore Ravaging. Journal of Archaeological Science 26 : 929.Google Scholar
Binford, L. R. 1978 Nunamiut Ethnoarchaeology. Academic Press, New York.Google Scholar
Binford, L. R. 1984 The Faunal Remains from Klasies River Mouth. Academic Press, New York.Google Scholar
Brain, C. K. 1981 The Hunters or the Hunted? University of Chicago Press, Chicago.Google Scholar
Bunn, H. T. 1986 Patterns of Skeletal Element Representation and Hominid Subsistence Activities at Olduvai Gorge, Tanzania, and Koobi Fora, Kenya. Journal of Human Evolution 15 : 673690.Google Scholar
Bunn, H.T., and Kroll, E.M. 1986 Systematic Butchery by Plio-Pleistocene Hominids at Olduvai Gorge, Tanzania. Current Anthropology 27 : 431452.Google Scholar
Davis, S. J. M. 1987 The Archaeology of Animals. Yale University Press, New Haven.Google Scholar
Frey, C. J., and Marean, C. W. 1999 Mammal Remains. In The Iron Age Settlement at ‘Ain Dam, Syria, edited by Stone, E. C. and Zimansky, P.E. pp. 123137. BAR International Series 786, Oxford.Google Scholar
Gifford, D. P., and Crader, D. C. 1977 A Computer Coding System for Archaeological Faunal Remains. American Antiquity 42 : 225238.Google Scholar
Grayson, D. K. 1981 The Effects of Sample Size on Some Derived Measures in Vertebrate Faunal Analysis. Journal of Archaeological Science 8 : 7788.CrossRefGoogle Scholar
Grayson, D. K. 1984 Quantitative Zooarchaeology. Academic Press, New York.Google Scholar
Klein, R. G., and Cruz-Uribe, K. 1984 The Analysis of Animal Bonesfrom Archaeological Sites. University of Chicago Press, Chicago.Google Scholar
Klein, R. G., and Cruz-Uribe, K. 1986 Pascal Programs for Computing Taxonomic Abundance in Samples of Fossil Mammals. Journal of Archaeological Science 13 : 171187.Google Scholar
Klein, R. G., and Cruz-Uribe, K. 1998 Comment on Marean and Kim. Current Anthropology 39 : S96S97.Google Scholar
Klein, R. G., Cruz-Uribe, K., and Milo, R. G. 1999 Skeletal Element Representation in Archaeofaunas : Comments on “Explaining the Klasies Pattern : Kua Ethnoarchaeology, the Die Kelders Middle Stone Age Archaeofauna, Long Bone Fragmentation and Carnivore Ravaging” by Bartram and Marean. Journal of Archaeological Science 26 : 12251238.Google Scholar
Landon, D. B. 1996 Feeding Colonial Boston : A Zooarchaeological Study. Historical Archaeology 30 : 1153.Google Scholar
Lyman, R. L. 1984 Bone Density and Differential Survivorship of Fossil Classes. Journal of Anthropological Archaeology 32 : 59299.Google Scholar
Lyman, R. L. 1994a Quantitative Units and Terminology in Zooarchaeology. American Antiquity 59 : 3671.Google Scholar
Lyman, R. L. 1994b Vertebrate Taphonomy. Cambridge University Press, New York.Google Scholar
Marean, C. W. 1990 Late Quaternary Paleoenvironments and Faunal Exploitation in East Africa. University of California at Berkeley.Google Scholar
Marean, C. W. 1991 Measuring the Postdepositional Destruction of Bone in Archaeological Assemblages. Journal of Archaeological Science 18 : 677694.Google Scholar
Marean, C. W. 1998 A Critique of the Evidence for Scavenging by Neanderthals and Early Modern Humans : New Data from Kobeh Cave (Zagros Mousterian) and Die Kelders (South Africa Middle Stone Age). Journal of Human Evolution 35 : 111136.CrossRefGoogle Scholar
Marean, C. W., and Assefa, Z. 1999 Zooarchaeological Evidence for the Faunal Exploitation Behavior of Neandertals and Early Modern Humans. Evolutionary Anthropology 8 : 2237.Google Scholar
Marean, C. W., and Frey, C. J. 1997 The Animal Bones from Caves to Cities : Reverse Utility Curves as Methodological Artifacts. American Antiquity 62 : 698711.CrossRefGoogle Scholar
Marean, C. W., and Kim, S. Y. 1998 Mousterian Faunal Remains from Kobeh Cave (Zagros Mountains, Iran) : Behavioral Implications for Neanderthals and Early Modern Humans. Current Anthropology 39 : S79S114.Google Scholar
Marean, C. W., and Spencer, L. M. 1991 Impact of Carnivore Ravaging on Zooarchaeological Measures of Element Abundance. American Antiquity 56 : 645658.Google Scholar
Milo, R. G. 1994 Human-Animal Interactions in Southern African Prehistory : a Microscopic Study of Bone Damage Signatures. Unpublished Ph.D. dissertation, Department of Anthropology, University of Chicago.Google Scholar
Milo, R. G. 1998 Evidence for Hominid Predation at Klasies River Mouth, South Africa, and Its Implications for the Behavior of Early Modern humans. Journal of Archaeological Science 25 : 99133.CrossRefGoogle Scholar
Morlan, R. E. 1994 Bison Bone Fragmentation and Survivorship : A Comparative Method. Journal of Archaeological Science 21 : 797807.Google Scholar
Miinzel, S. C. 1988 Qualitative Analysis and Archaeological Site Interpretation. Archaeozoologia 2 : 93110.Google Scholar
Redding, R. W., Wheeler Pires-Ferreira, J., and Zeder, M. A. 1975 A Proposed System for Computer Analysis of Identifiable Faunal Material from Archaeological Sites. Paleorient 3 : 191205.CrossRefGoogle Scholar
Redding, R. W., Zeder, M. A., and McArdle, J. 1978 Bonesort II—A System for the Computer Analysis of Identifiable Faunal Material. ^Approaches to Faunal Analysis in the Middle East, edited by Meadow, R. H. and Zeder, M.A. pp. 135147. Peabody Museum of Archaeology and Ethnology Bulletin 2. Harvard University Press, Cambridge.Google Scholar
Reitz, E. J., and Wing, E. S. 1999 Zooarchaeology. Cambridge University Press, New York.Google Scholar
Stiner, Mary C. 1998 Comment on Marean and Kim. Current Anthropology 39 : S98S103.Google Scholar
Uerpmann, H-P. 1978 The “Knocod” System for Processing Data on Animal Bones from Archaeological Sites. In Approaches to Faunal Analysis in the Middle East, edited by Meadow, R. H. and Zeder, M.A. pp. 135147. Peabody Museum of Archaeology and Ethnology Bulletin 2. Harvard University Press, Cambridge.Google Scholar
Watson, J. P. N. 1979 The Estimation of the Relative Frequencies of Mammalian Species : Khirokitia 1972. Journal of Archaeological Science 6 : 12737.Google Scholar