Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-26T20:48:28.406Z Has data issue: false hasContentIssue false

Chemistry and Paleodietary Research: No More Easy Answers

Published online by Cambridge University Press:  20 January 2017

Andrew Sillen
Affiliation:
Archaeometry Laboratory, Department of Archaeology, University of Cape Town, Rondebosch 7700, South Africa
Judith C. Sealy
Affiliation:
Archaeometry Laboratory, Department of Archaeology, University of Cape Town, Rondebosch 7700, South Africa
Nikolaas J. van der Merwe
Affiliation:
Archaeometry Laboratory, Department of Archaeology, University of Cape Town, Rondebosch 7700, South Africa

Abstract

While isotopic and elemental analyses of prehistoric skeletons have made an important contribution to paleodietary research over the last 10 years, certain problems in the application of these techniques only now are emerging. These problems, affecting both isotopic and trace-element studies, mainly are due to the peculiar interdisciplinary nature of the field, rather than to any technological barrier. With minor exceptions, techniques developed largely in other sciences have been grafted on to archaeological problems. This no longer suffices because gaps remain in the scientific grounding of these techniques that need to be addressed before more complicated archaeological questions can be resolved. While the necessary studies may seem to be of little immediate anthropological interest, they are vital if continued progress in paleodietary research is to characterize the years ahead.

Résumé

Résumé

Aunque los análisis isotópicos y elementales de esqueletos prehistóricos han aportado una contributión importante a la investigación paleodietética durante los ultimos diez años, solamente ahora empiezan a emerger ciertos problemas que se presentan en la aplicación de dichas técnicas. Estos problemas, que afectan tanto a los estudios isotópicos como a los elementos residuales, se deben principalmente a la naturaleza interdisciplinaria especial de esta esfera de actividades más que a una barrera tecnológica. Con excepciónes menores, técnicas que se han desarrollado grandemente en otras ciencias han sido aplicadas a los problemas arqueológicos. Esto ya no es suficiente porque en el tratamiento cientifico de dichas técnicas quedan lagunas a las que hay que aplicarse antes de que puedan resolverse cuestiones arqueológicos mas complicadas. A pesar de que ciertos estudios necesarios puedan parecer de poco interés antropológico inmediato, estos son vitales si un progreso continuado en la investigación paleodietética va a ser lo que caracterice los años futuros.

Type
Articles
Copyright
Copyright © Society for American Archaeology 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References Cited

Ambrose, S. H. 1986 Stable Carbon and Nitrogen Isotope Analysis of Human and Animal Diet in Africa. Journal of Human Evolution 15 : 707731.Google Scholar
Ambrose, S. H., and DeNiro, M. J. 1986a Reconstruction of African Human Diet Using Bone Collagen Carbon and Nitrogen Isotope Ratios. Nature 319 : 321324.CrossRefGoogle Scholar
Ambrose, S. H., and DeNiro, M. J. 1986b The Isotopic Ecology of East African Mammals. Oecologia 69 : 395406.Google Scholar
Boaz, N. T., and Hampel, J. 1978 Strontium Content of Fossil Tooth Enamel and Diets of Early Hominids. Journal of Palaeontology 52 : 928933.Google Scholar
Biltz, R. M., and Pelligrino, D. 1977 The Nature of Bone Carbonate. Clinical Orthopaedics and Related Research 18 : 8190.Google Scholar
Brown, A. 1973 Bone Strontium Content as a Dietary Indicator in Prehistoric Human Populations. Unpublished Ph. D. dissertation, Department of Anthropology, University of Michigan, Ann Arbor.Google Scholar
Buikstra, J. E., Frankenberg, S., Lambert, J. B., and Hue, L. 1989 Multiple Elements : Multiple Expectations. In The Chemistry of Prehistoric Human Bone, edited by Price, T. D.. Cambridge University Press, Cambridge, England, in press.Google Scholar
Bumsted, P. 1984 Human Variation : 3C in Adult Bone Collagen and the Relation to Diet in an Isochronous C4 (Maize) Archaeological Population. Los Alamos National Laboratory Thesis LA-10259-T. Los Alamos, New Mexico.Google Scholar
Chickerur, N. S., Tung, M. S., and Brown, W. E. 1980 A Mechanism for Incorporation of Carbonate into Apatite. Calcified Tissue International 32 : 5562.CrossRefGoogle ScholarPubMed
DeNiro, M. J., and Epstein, S. 1978 Influence of Diet on the Distribution of Carbon Isotopes in Animals. Geochimica et Cosmochimica Acta 42 : 495506.Google Scholar
DeNiro, M. J., and Epstein, S. 1981 Influence of Diet on the Distribution of Nitrogen Isotopes in Animals. Geochimica et Cosmochimica 45 : 341351.Google Scholar
DePaolo, D. J., and Ingram, B. L. 1985 High Resolution Stratigraphy with Strontium Isotopes. Science 227 : 938941.CrossRefGoogle ScholarPubMed
Elias, R. W., Hirao, Y., and Patterson, C. C. 1982 The Circumvention of the Natural Biopurification of Calcium Along Nutrient Pathways by Atmospheric Inputs of Industrial Lead. Geochimica et Cosmochimica Acta 46 : 25612580.Google Scholar
Ericson, J. E. 1985 Strontium Isotope Characterization in the Study of Prehistoric Human Ecology. Journal of Human Evolution 14 : 503514.Google Scholar
Francalacci, P., and Tarli, S. B. 1988 Multielementary Analysis of Trace Elements and Preliminary Results on Stable Isotopes in Two Italian Prehistoric Sites : Methodological Aspects. In Trace Elements in Environmental History edited by Grupe, G. and Herrmann, B., pp. 4152. Springer-Verlag, Berlin.Google Scholar
Gilbert, R. 1975 Trace Element Analysis of Three Skeletal Amerindian Populations at Dickson Mounds. Unpublished Ph. D. dissertation, Department of Anthropology, University of Massachusetts, Amherst.Google Scholar
Hassan, A. A. 1975 Geochemical and Mineralogical Studies on Bone Mineral and Their Implications for Radiocarbon Dating. Unpublished Ph. D. dissertation, Department of Geology, Southern Methodist University, Dallas.Google Scholar
Heaton, T. H. E., Vogel, J. C., Chevallerie, G. von la, and Collett, G. 1986 Climatic Influence on the Isotopic Composition of Bone Nitrogen. Nature 322 : 822823.Google Scholar
Isaac, G. 1985 Using Isotope Chemistry to Detect Prehistoric Diets. Nature 315 : 9899.Google Scholar
Katzenberg, M. A. 1983 Chemical Analysis of Prehistoric Human Bone from Five Temporally Distinct Populations in Southern Ontario. Unpublished Ph. D. dissertation, Department of Anthropology, University of Toronto, Toronto.Google Scholar
Klepinger, L. L., Kuhn, J. K., and Wendell, S. 1986 An Elemental Analysis of Archaeological Bone from Sicily as a Test of Predictability of Diagenetic Change. American Journal of Physical Anthropology 70 : 325331.Google Scholar
Klepinger, L. L., and Mintel, R. W. 1986 Metabolic Considerations in Reconstructing Past Diet from Stable Carbon Isotope Ratios of Bone Collagen. In Proceedings of the 24th International Archaeometry Symposium, edited by Olin, J. S. and Blackman, M. J., pp. 4348. Smithsonian Institution Press, Washington, D. C. Google Scholar
Krueger, H. W., and Sullivan, C. H. 1984 Models for Carbon Isotope Fractionation Between Diet and Bone. In Stable Isotopes in Nutrition, edited by Turnlund, J. R. and Johnson, P. E., pp. 205220. Symposium Series No. 258. American Chemical Society, Washington, D. C. Google Scholar
Kyle, J. H. 1986 Effects of Post-Burial Contamination on the Concentrations of Major and Minor Elements in Human Bones and Teeth— The Implications for Palaeodietary Research. Journal of Archaeological Science 13 : 403416.Google Scholar
Lambert, J. B., Simpson, S. V., Szpunar, C. B., and Buikstra, J. E. 1984 Ancient Human Diet from Inorganic Analysis of Bone. Accounts of Chemical Research 17 : 298305.CrossRefGoogle Scholar
Lee-Thorp, J. A., and Merwe, N. J. van der 1987 Carbon Isotope Analysis of Fossil Bone Apatite. South African Journal of Science 83 : 712715.Google Scholar
LeGeros, R. Z., and Tung, M. S. 1983 Chemical Stability of the Carbonate and Fluoride Containing Apatites. Caries Research 17 : 419429.Google Scholar
Maloiy, G. M. O. 1972 Renal Salt and Water Excretion in the Camel (Camelus dromedarius). Symposium of the Zoological Society of London 31 : 243259.Google Scholar
Maloiy, G. M. O. 1973 The Water Metabolism of a Small East African Antelope : The Dikdik. Proceedings of the Royal Society of London B184 : 167178 Google Scholar
Maloiy, G. M. O. 1980 Biochemistry. A Case-oriented Approach. 3rd ed. C. V. Mosby, St. Louis.Google Scholar
Nelson, B. K., DeNiro, M. J., Schweninger, M. J., and DePaolo, D. J. 1986 Effects of Diagenesis on Strontium, Carbon, Nitrogen, and Oxygen Concentration and Isotopic Composition of Bone. Geochimica et Cosmochimica Acta 50 : 19411949.Google Scholar
Pate, D., and Brown, K. A. 1985 The Stability of Bone Strontium in the Geochemical Environment. Journal of Human Evolution 14 : 483491.Google Scholar
Price, T. D. 1989 Changes in Bone Strontium : Diet or Diagenesis? In The Chemistry of Prehistoric Human Bone, edited by Price, T. D.. Cambridge University Press, Cambridge, England, in press.Google Scholar
Price, T. D., Schoeninger, M. J., and Armelagos, G. J. 1985 Bone Chemistry and Past Behaviour : An Overview. Journal of Human Evolution 14 : 419447.Google Scholar
Runia, L. T. 1987 Strontium and Calcium Distribution in Plants : Effect on Palaeodietary Studies. Journal of Archaeological Science 14 : 599608.Google Scholar
Schoeller, D. A., Brown, C., Nakamura, K., Nakagawa, A., Mazzeo, R. S., Brooks, G. A., and Budinger, T. F. 1984 Influence of Metabolic Fuel on the 13C/12C Ratio of Breath C02. Biomedical Mass Spectrometry 11 : 557561.Google Scholar
Schoeller, D. A., Klein, P. D., Watkins, J. B., Heim, T., and Maclean, W. C. 1980 13C Abundances of Nutrients and the Effect of Variations in 13C Isotopic Abundances of Test Meals Formulated for 13C02 Breath Tests. American Journal of Clinical Nutrition 33 : 23752385.CrossRefGoogle Scholar
Schoeninger, M. J. 1979 Dietary Reconstruction at Chalcatzingo. A Formative Period Site in Morelos, Mexico. Technical Report No. 9. Museum of Anthropology, University of Michigan, Ann Arbor.Google Scholar
Schoeninger, M. J., and DeNiro, M. J. 1982 Carbon Isotope Ratios of Apatite from Fossil Bone Cannot be Used to Reconstruct Diets of Animals. Nature 297 : 577578.CrossRefGoogle ScholarPubMed
Schoeninger, M. J., and DeNiro, M. J. 1984 Nitrogen and Carbon Isotopic Composition of Bone Collagen from Marine and Terrestrial Animals. Geochimica et Cosmochimica Acta 48 : 625639.Google Scholar
Schoeninger, M. J., DeNiro, M. J., and Tauber, H. 1983 Stable Nitrogen Isotope Ratios of Bone Collagen Reflect Marine and Terrestrial Components of Prehistoric Human Diet. Science 220 : 13811383.CrossRefGoogle ScholarPubMed
Sealy, J. C, and Sillen, A. 1988 Sr and Sr/Ca in Marine and Terrestrial Foodwebs in the Southwestern Cape, South Africa. Journal of Archaeological. Science 15 : 425438.Google Scholar
Sealy, J. C, and Merwe, N. J. van der 1986 Isotope Assessment and the Seasonal-Mobility Hypothesis in the Southwestern Cape of South Africa. Current Anthropology 27 : 135150.Google Scholar
Sealy, J. C, Merwe, N. J. van der, Lee-Thorp, J. A., and Lanham, J. L. 1987 Nitrogen Isotopic Ecology in Southern Africa : Implications for Environmental and Dietary Tracing. Geochimica et Cosmochimica Acta 51 : 27072717.Google Scholar
Sillen, A. 1981 Strontium and Diet at Hayonim Cave. American Journal of Physical Anthropology 56 : 131137.Google Scholar
Sillen, A. 1986 Biogenic and Diagenetic Sr/Ca in Plio-Pleistocene Fossils of the Omo Shungura Formation. Paleobiology 12 : 311323.CrossRefGoogle Scholar
Sillen, A. 1988 Elemental and Isotopic Analyses of Mammalian Fauna from Southern Africa and Their Implications for Palaeodietary Research. American Journal of Physical Anthropology 76 : 4960.Google Scholar
Sillen, A., and Kavanagh, M. 1982 Strontium and Paleodietary Research : A Review. Yearbook of Physical Anthropology 25 : 6790.Google Scholar
Steele, K. W., and Daniel, R. M. J. 1978 Fractionation of Nitrogen Isotopes by Animals : A Further Complication to the Use of Variations in the Natural Abundance of 15N for Tracer Studies. Journal of Agricultural Science 90 : 79.Google Scholar
Sullivan, C. H., and Krueger, H. W. 1981 Carbon Isotope Analysis of Separate Chemical Phases in Modern and Fossil Bone. Nature 292 : 333335.CrossRefGoogle ScholarPubMed
Sullivan, C. H., and Krueger, H. W. 1983 Carbon Isotope Ratios of Bone Apatite and Animal Diet Reconstruction. Nature 301 : 177178.CrossRefGoogle ScholarPubMed
Tauber, H. 1981 13C Evidence for Dietary Habits of Prehistoric Man in Denmark. Nature 292 : 332333.CrossRefGoogle ScholarPubMed
Termine, J. D., and Lundy, D. R. 1973 Hydroxide and Carbonate in Rat Bone Mineral and Its Synthetic Analogues. Calcified Tissue Research 13 : 7382.Google Scholar
Termine, J. D., and Lundy, D. R. 1965 Strontium in Fossil Bones and the Reconstruction of Food-chains. Science 149 : 854855.Google Scholar
van der Merwe, N. J. 1982 Carbon Isotopes, Photosynthesis, and Archaeology. American Scientist 70 : 596606.Google Scholar
Vogel, J. C, and Merwe, N. J. van der 1977 Isotopic Evidence for Early Maize Cultivation in New York State. American Antiquity 42 : 238242.Google Scholar
Zurer, P. S. 1983 Archaeological Chemistry. Chemistry Engineering News 61 : 2644.Google Scholar