Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-04T17:54:08.890Z Has data issue: false hasContentIssue false

Analysis of Shell-Tempered Pottery Replicates: Implications for Provenance Studies

Published online by Cambridge University Press:  20 January 2017

James W. Cogswell
Affiliation:
Research Reactor Center, University of Missouri, Columbia, MO 65211
Hector Neff
Affiliation:
Research Reactor Center, University of Missouri, Columbia, MO 65211
Michael D. Glascock
Affiliation:
Research Reactor Center, University of Missouri, Columbia, MO 65211

Abstract

Archaeometric methods such as provenance studies must be predicated on understanding the processes that underlie the production of this information. This study focuses on element-based provenance studies of Mississippian-period pottery, which are complicated by the fact that this pottery generally was tempered with crushed shell in different amounts and of unknown species composition. Experiments conducted at the Missouri University Research Reactor (MURR) have documented elemental dilution and enhancement effects of adding shell temper to clay. Mathematical corrections previously have been employed to correct for shell-temper effects. Results of physical, chemical, and mathematical approaches to eliminating the effects of shell tempering indicate that mathematical methods, based on a firm knowledge of shell composition, provide the most efficient correction.

Résumé

Résumé

Los métodos empleados para determinar la procedendo de artefactos arqueológicos deben basarse en un conocimiento de los procesos cientifícos que producen la información necesaria para realizar un estudio. Para el caso del período Misisipi, estudios de procedendo de cerámica basados en la composición química se complican debido a la presencia de desgrasante de concha de especies desconocidas en distintas cantidades. Experimentos realizados en el MURR han permitido documentor los procesos de dilución y el efecto de enriquecimento que resultan al añadir desgrasante de concha a la arcilla. Resultados de los análisis físicos, químìcos y matemátìcos empleados para eliminar los efectos del desgrasante de concha indican que los métodos matemáticos, cuando se basan en unfirme conocimiento de la composición de la concha, proveen la corrección más eficiente.

Type
Reports
Copyright
Copyright © The Society for American Archaeology 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References Cited

Blackman, M. J. 1981 The Mineralogical and Chemical Analysis of Banesh Period Ceramics from Tal-E Malyan, Iran. In Scientific Studies in Ancient Ceramics, edited by Hughes, M. J., pp. 720. Occasional Paper No. 19. British Museum, London.Google Scholar
Burton, J. A., and Simon, A. W. 1993 Acid Extraction as a Simple and Inexpensive Method for Compositional Characterization of Archaeological Ceramics. American Antiquity 58: 4559.CrossRefGoogle Scholar
Burton, J. A., and Simon, A. W. 1996 A Pot Is Not a Rock: A Reply to Neff, Glascock, Bishop, and Blackman. American Antiquity 61: 405413 CrossRefGoogle Scholar
Burton, J. A., and Simon, A. W. 1996a The Effect of Firing Temperature on the Elemental Characterization of Pottery. Journal of Archaeological Science 23: 283287.Google Scholar
Cogswell, J. W., Ross, L. M., Jr., O'Brien, M. J., Neff, H., 1996b Postmanufacture Effects on the Chemical Characterization of Prehistoric Pottery: Evidence from the Central Mississippi River Valley. Paper presented at the 30th International Symposium on Archaeometry, Urbana, Illinois.Google Scholar
Elam, J. M., Car, C., Glascock, M. D., and Neff, H. 1992 Ultrasonic Disaggregation and Instrumental Neutron Activation Analysis of Textural Fractions of Tucson Basin and Ohio Valley Pottery. In Chemical Characterization of Ceramic Pastes in Archaeology, edited by Neff, H., pp. 93111. Monographs in World Archaeology No. 7. Prehistory Press, Madison, Wisconsin.Google Scholar
Feathers, J. K. 1990 Explaining the Evolution of Prehistoric Ceramics in Southeastern Missouri. Ph.D. dissertation, University of Washington, Seattle.Google Scholar
Gaines, A. M., and Handy, J. L. 1977 Ultrasonic Disaggregation of Potsherds for Mineral Separation and Analysis. American Antiquity 42: 252254.CrossRefGoogle Scholar
Gaines, A. M., and Handy, J. L. 1992 Characterization of Archaeological Ceramics at MURR by Neutron Activation Analysis and Multivariate Statistics. In Chemical Characterization of Ceramic Pastes in Archaeology, edited by Neff, H., pp. 1126. Monographs in World Archaeology No. 7. Prehistory Press, Madison, Wisconsin.Google Scholar
Gomez, B., Rautman, M., Neff, H., and Glascock, M. D. 1996 Clays Used in the Manufacture of Cypriot Red Slip Pottery and Related Ceramics. In Report of the Department of Antiquities, pp. 6982. Cyprus.Google Scholar
Hatcher, H., Tite, M. S., and Walsh, J. N. 1995 A Comparison of Inductively-Coupled Plasma Emission Spectrometry and Atomic Absorption Spectrometry Analysis on Standard Reference Silicate Materials and Ceramics. Archaeometry 37: 8394.CrossRefGoogle Scholar
Million, M. G. 1975 Ceramic Technology of the Nodena Phase People (ca. 1400-1700). Southeast Archaeological Conference Bulletin 18: 201208.Google Scholar
Neff, H., Bishop, R. L., and Sayre, E. V. 1988 A Simulation Apporach to the Problem of Tempering in Compositional Studies of Archaeological Ceramics. Journal of Archaeological Science 15: 159172.Google Scholar
Neff, H., Bishop, R. L., and Sayre, E. V. 1989 More Observations on the Problem of Tempering in Compositional Studies of Archaeological Ceramics. Journal of Archaeological Science 16: 5769.CrossRefGoogle Scholar
Neff, H., Glascock, M. D., Bishop, R. L., and Blackman, M. J. 1996 An Assessment of the Acid-Extraction Approach to Compositional Characterization of Archaeological Ceramics. American Antiquity 61: 389104.CrossRefGoogle Scholar
Neff, H., Glascock, M. D., and Cogswell, J. W 1992 Chemical Characterization of Mississippian Pottery and Clays from the Southeast Missouri Lowlands and Adjacent Ozark Uplands. Research report submitted to National Park Service, Midwest Archeological Center, Lincoln, Nebraska.Google Scholar
Phillips, P. 1970 Archaeological Survey in the Lower Yazoo Basin, Mississippi 1949-1955. Papers of the Peabody Museum of Archaeology and Ethnology Vol. 60. Harvard University, Cambridge, Massachusetts.Google Scholar
Phillips, P. 1994 Atomic Absorption Spectrophotometry Analysis of Ceramic Artefacts from a Protohistoric Site in Oklahoma. Journal of Archaeological Science 21: 343358.Google Scholar
Steponaitis, V., and Blackman, M. J. 1981 Chemical Characterization of Mississippian Pottery. Paper presented at the 38th Annual Meeting of the Southeastern Archaeological Conference, Asheville, North Carolina.Google Scholar
Steponaitis, V., Blackman, M. J., and Weisman, R. 1988 Chemical and Mineralogical Characterization of Mississippian Pottery. Paper presented at the 53rd Annual Meeting of the Society for American Archaeology, Phoenix, Arizona.Google Scholar
Stoltman, J. B., Burton, J. W., and Haas, J. 1992 Chemical and Petrographic Characterizations of Ceramic Pastes: Two Perspectives on a Single Data Set. In Chemical Characterization of Ceramic Pastes in Archaeology, edited by Neff, H., pp. 8592. Monographs in World Archaeology No. 7. Prehistory Press, Madison, Wisconsin.Google Scholar