Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-05T03:37:29.287Z Has data issue: false hasContentIssue false

Origins of an Anasazi Scarlet Macaw Feather Artifact

Published online by Cambridge University Press:  20 January 2017

Nancy Borson
Affiliation:
Department of Immunology, Mayo Foundation, Rochester, MN 55905
Frances Berdan
Affiliation:
Department of Anthropology, California State University, San Bernardino, CA 92407
Edward Stark
Affiliation:
Department of Anthropology, California State University, San Bernardino, CA 92407
Jack States
Affiliation:
Department of Biology, Northern Arizona University, Flagstaff, AZ 86011
Peter J. Wettstein
Affiliation:
Departments of Surgery and Immunology, Mayo Foundation, Rochester, MN 55905

Abstract

An artifact ascribed to the Anasazi culture (dated here to 920 ± 35 B.P.) is unique in its integrity, construction technique, style, and materials, including multiple yucca ropes with attached adult scarlet macaw feathers joined to a Sciurus aberti (tassel-eared squirrel) pelt and hide straps. We applied methods from anthropology and molecular biology to ascertain the origins of materials and manufacturing technique. The cytochrome b gene from the ancient DNA of the pelt was sequenced in its entirety. This gene was unique as defined by new nucleotide substitutions that distinguished it from the other S. aberti alleles. Phylogenetic trees constructed by both neighbor-joining and maximum parsimony methods are consistent with this unique allele being most closely related to genes from two extant American Southwest S. aberti subspecies and more distantly related to Mexican S. aberti genes. Our observations support the conclusion that the entire artifact was constructed in the American Southwest using native materials, including the squirrel pelt and scarlet macaw feathers. This contradicts a prior hypothesis that the feather rope component was assembled before being traded north from Mexico.

Résumé

Résumé

En este trabajo se describe un utensillo ornamental perteneciente a la cultura Anasazi, datado en 920 ± 35 B.P. Este omamento es único en su integridad, estilo, técnica y materiales de construcción, que incluyen cuerdas múltiples de yuca con plumas escarlata de papagayo adulto, unidas a una pieza de piel de ardilla de la especie Sciurus aberti. Métodos de biología molecular y antropologia se aplicaron para establecer el origen de los materiales y la técnica de manufactura. El ADN proveniente de la piel de S. aberti permitió secuenciar completamente el gen del citocroma b. Este gen se caracterizó como único en base a la sustitución de nucleótidos que lo distinguen de otros álelos de S. aberti. Los árboles filogenéticos construídos en base a métodos de relaciones parenterales y parsimonia máxima permiten concluir la existencia de una relación más cercana entre este alelo y los genes de dos subespecies de S. aberti del sudoeste americano, que con genes de las subespecies mexicanas. Nuestras observaciones permiten concluir que este utensillo se construyó completamente en el sudoeste americano, con materiales autóctonos y plumas de papagayo comercializadas desde México. Esta conclusión contradice la hipótesis previa que apoya el ensamblado de las cuerdas de plumas en México con anterioridad a su intercambio comercial.

Type
Reports
Copyright
Copyright © The Society for American Archaeology 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References Cited

Bruggmann, M., and Acatos, S. 1990 Pueblos: Prehistoric Indian Cultures of the Southwest. Facts on File, New York.Google Scholar
Canby, T. Y. 1982 The Anasazi: Riddles in the Ruins. National Geographic: 554592.Google Scholar
Cooper, A. 1994 Ancient DNA Sequences Reveal Unsuspected Phylogenetic Relationships within New Zealand Wrens (Acanthisittidae). Experientia 50: 558563.Google Scholar
Fewkes, J. W. 1903 Experientia Rio Grande Press, Glorieta, New Mexico.Google Scholar
Hagelberg, E., and Clegg, J. B. 1991 Isolation and Characterization of DNA from Archaeological Bone. Proceedings of the Royal Society of London 244: 4550.Google ScholarPubMed
Hargrave, L. 1970 Mexican Macaws: Comparative Osteology and Survey of Remains from the Southwest. University of Arizona Press, Tucson.Google Scholar
Hargrave, L. 1979 A Macaw Feather Artifact from Southeastern Utah. Southwestern Lore 45: 16.Google Scholar
Hoffmeister, D. F., and Diersing, V. E. 1978 Review of the Tassel-eared Squirrels of the Subgenus Otosciurus. Journal of Mammalogy 59: 40213.Google Scholar
Irwin, D. M., Kocher, T. D., and Wilson, A. C. 1991 Evolution of the Cytochrome b Gene of Mammals. Journal of Molecular Evolution 32: 128144.Google Scholar
Jukes, T. H., and Cantor, C. R. 1969 Mammalian Protein Metabolism. In Evolution of Protein Molecules, edited by Munro, H. N., pp. 21132. Academic Press, New York.Google Scholar
Kocher, T. D., Thomas, W K., Meyer, A., Edwards, S. V., 1989 Dynamics of Mitochondrial DNA Evolution in Animals: Amplification and Sequencing with Conserved Primers. Proceedings of the National Academy of Sciences 86: 61966200. Washington, D.C. Google Scholar
Kowk, S., Kellogg, D. E., McKinney, N., Spasic, D., Goda,, L. 1990 Effects of Primer-Template Mismatches on the Polymerase Chain Reaction: Human Immunodeficiency Virus Type I Model Studies. Nucleic Acids Research 18: 9901005.Google Scholar
Kumar, S., Tamura, K., and Nei, M. 1993 MEGA: Molecular Evolutionary Genetics Analysis, version 1.01. Pennsylvania State University, University Park.Google Scholar
Kumar, S., Tamura, K., and Nei, M. 1997 Rewriting Southwestern Prehistory. Archaeology 50(l): 5255.Google Scholar
Paabo, S. 1989 Ancient DNA: Extraction, Characterization, Molecular Cloning, and Enzymatic Amplification. Proceedings of the National Academy of Sciences 86: 19391943. Washington, D.C.Google Scholar
Paabo, S. 1990 Amplifying Ancient DNA. In PCR Protocols: A Guide to Methods and Applications, edited by Innis, M. A., Gelfand, D. H., Sninsky, J. J., and White, T. J., pp. 159166. Academic Press, San Diego, California.Google Scholar
Rzhetsky, A., and Nei, M. 1992 A Simple Method for Estimating and Testing Minimum-Evolution Trees. Molecular Biological Evolution 9: 945967.Google Scholar
Sahagiin, B. de 1950-1982 [ca. 1578] Florentine Codex. General History of the Things of New Spain of Fray Bernardino de Sahagiin. Translated and edited by O, A. J.. Anderson and C. E. Dibble. 12 books. School of American Research, Santa Fe, New Mexico, and University of Utah Press, Salt Lake City.Google Scholar
Saitou, N., and Nei, M. 1987 The Neighbor-Joining Method: A New Method for Reconstructing Phylogenetic Trees. Molecular Biological Evolution 4: 406125.Google Scholar
Salo, W. L., Aufderheide, A. C., Buikstra, J., and Holcomb, T. A. 1994 Identification of Mycobacterium Tuberculosis DNA in a Pre-Columbian Peruvian Mummy. Proceedings of the National Academy of Sciences 91: 20912094. Washington, D.C.Google Scholar
Simpson, R. 1953 The Hopi Indians. Southwest Museum, Los Angeles.Google Scholar
Simpson, R. 1952 Kiva Mural Decorations at Awatovi and Kawaika-a, with a Survey of Other Wall Paintings in the Pueblo Southwest. Papers of the Peabody Museum of American Archaeology and Ethnology Vol. 37. Harvard University, Cambridge, Massachusetts.Google Scholar
Swofford, D. L. 1993 PAVP: Phylogenetic Analysis Using Parsimony, Version 3.0. Natural History Survey, University of Illinois, Champaign.Google Scholar
Tanner, C. L. 1976 Prehistoric Southwestern Craft Arts. University of Arizona Press, Tucson.Google Scholar
Wettstein, P. J., Lager, P., Jin, L., States, J., Lamb, T., and Chakraborty, R. 1994 Phylogeny of Mitochondrial DNA Clones in Tasseleared Squirrels, Sciurus aberti. Molecular Ecology 3: 541550.Google Scholar
Wettstein, P. J., Strausbauch, M., Lamb, T., States, J., Chakraborty, R., Jin, L., and Riblet, R. 1995 Phylogeny of Six Sciurus aberti Subspecies Based on Nucleotide Sequences of Cytochrome b. Molecular Phylogenetic Evolution 4: 150162.Google Scholar