Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-26T11:33:35.490Z Has data issue: false hasContentIssue false

Beyond Water Harvesting: A Soil Hydrology Perspective on Traditional Southwestern Agricultural Technology

Published online by Cambridge University Press:  20 January 2017

Steven Dominguez
Affiliation:
Department of Anthropology, Washington State University, Pullman, WA, 99164
Kenneth E. Kolm
Affiliation:
Department of Anthropology, Washington State University, Pullman, WA, 99164

Abstract

This article presents a hypothetical, general model that describes the processes involved in one aspect of traditional Southwestern agriculture: the interactions between soil hydrology and farming technology. In conjunction with extensive participation in hand cultivation with Hopi farmers, studies of soil hydrologic processes in Hopi maize fields have identified hydrological processes directly linked to Hopi field location criteria and farming practices. Field location criteria select for locations where soil textures and soil profile heterogeneity control rates of moisture infiltration, as well as loss to runoff, bare soil evaporation, and drainage. Farming practices, including clearing, maintenance, plant spacing, seed depth, and planting pit morphology, operate in conjunction with soil profile attributes to increase the amount of moisture available to plants and the mobility of that moisture. Effects of both soil profile attributes and farming practices are integrated into the discrete soil volume model of hydrologic processes occurring in the basic unit of Hopi farming, the individual plant clump. This information provides basic insights on ways archaeologists might evaluate the productive potentials of soils, the extent of farmable land around prehistoric communities, and the ranges of climate conditions that permit crop growth on that land.

Résumé

Résumé

Este artículo presenta un modelo hipotético y general que describe los procesos implicados en un aspecto de la agricultura tradicional del sudoeste: las interacciones entre la hidrología del suelo y la tecnología del cultivo. Conjuntamente con la participación extensiva del cultivo a mano con los granjeros Hopi, los estudios de los procesos hidrológicos del suelo en campos del maíz del Hopi han identificado procesos hidrológicos directamente ligados a los criterios de localización de los campos Hopi y a sus prácticas agrícolas. Los criterios de localización de los campos privilegian texturas del suelo, y donde la heterogeneidad en la textura controla la infiltración del agua, así como la pérdida superficial del agua, la evaporación de los suelos escasos, y drenaje al suelo profundo. Las prácticas agrícolas, incluyendo el mantenimiento, el espaciamiento de la planta, la profundidad de la semilla, y morfología de hoyos de plantación, funcionan conjuntamente con cualidades del perfil del suelo para aumentar la cantidad de humedad disponible para las plantas y la movilidad de esa humedad. Los efectos de los atributos del perfil del suelo y de las prácticas agrícolas se integran en el modelo ”discrete soil volume” de los procesos hidrológicos que ocurren en la unidad básica del cultivo Hopi, la parcela. Esta información proporciona ideas nuevas y básicas en las maneras en que los arqueólogos pueden evaluar los potenciales productivos de suelos, la extensión de la tierra arable alrededor de comunidades prehistóricas, y las condiciones del clima que permiten el crecimiento de cosecha en esa tierra.

Type
Articles
Copyright
Copyright © The Society for American Archaeology 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References Cited

Arnon, Isaac 1975 Physiological Principles of Dryland Crop Production. In Physiological Aspects of Dryland Farming, edited by Gupta, U. S., pp. 5145. Oxford and IBC Publishing, New Delhi.Google Scholar
Baker, Ralph S., and Hillel, Daniel 1990 Laboratory Tests of a Theory of Fingering during Infiltration into Layered Soils. Soil Science Society of America Journal 54: 2030.Google Scholar
Beaglehole, Ernest 1937 Notes on Hopi Economic Life. Yale University Publications in Anthropology, 15. New Haven.Google Scholar
Birkeland, Peter W., Machette, Michael N., and Haller, Katherine M. 1991 Soils as a Tool for Applied Quaternary Geology. Utah Geological and Mineral Survey Miscellaneous Publication, 91-3. Salt Lake City.Google Scholar
Bowers, George B. 1929 The Original Dry-Farmers of the Southwest. Southern Workman 58(10)453458.Google Scholar
Bradfield, Maitland 1969 Soils of the Oraibi Valley, Arizona, in Relation to Plant Cover. Plateau 41(3): 133140.Google Scholar
Bradfield, Maitland 1971 The Changing Pattern of Hopi Agriculture. Royal Anthropological Institute Occasional Paper, No. 30. Royal Anthropological Institute of Great Britain and Ireland, London.Google Scholar
Brandt, Carol B. 1995 Traditional Agriculture on the Zuni Indian Reservation in the Recent Historic Period. In Soil, Water, Biology, and Belief in Prehistoric and Traditional Southwestern Agriculture, edited by Wolcott Toll, H.. New Mexico Archaeological Council Special Publication, No. 2. Albuquerque, pp. 291301.Google Scholar
Brooks, R. H., and Corey, Arthur T. 1964 Hydraulic Properties of Porous Media. Colorado State University Hydrology Paper, 3. Fort Collins.Google Scholar
Bryan, Kirk 1929 Flood-Water Farming. Geographical Review 19: 444456.Google Scholar
Buoi, Stanley W., Hole, Francis D., and McCracken, Ralph J. 1994 Soil Genesis and Classification. 3rd ed. Iowa State University Press, Ames.Google Scholar
Carsel, Robert F, and Parrish, Rudolph S. 1988 Developing Joint Probability Distributions of Soil Water Retention Characteristics. Water Resources Research 24(5): 722769.Google Scholar
Clapp, R. B., and Hornberger, George M. 1978 Empirical Equations for Some Soil Hydraulic Properties. Water Resources Research 14: 601604.Google Scholar
Clark, Stanley P. 1928 Lessons from Southwestern Indian Agriculture. College of Agriculture, Experiment Station Bulletin, 125. University of Arizona, Tucson.Google Scholar
Collins, G. N. 1914 A Drought-Resisting Adaptation in Seedlings of Hopi Maize. Journal of Agricultural Research 1(4): 293305.Google Scholar
Cooley, Maurice E., Harshbarger, John W., Akers, J. P., and Hardt, William F. 1969 Regional Hydrogeology of the Navajo and Hopi Indian Reservations, Arizona, New Mexico, and Utah. U.S. Geological Survey Professional Paper, 521-A. Washington, D.C. Google Scholar
Cushing, Frank H. 1920 Zuni Breadstuff. Indian Notes and Monographs, Vol. 2. Museum of the American Indian Foundation, Heye Foundation, New York.CrossRefGoogle Scholar
Dean, Jeffrey S. 1988 Dendrochronology and Paleoenvironmental Reconstruction on the Colorado Plateaus. In The Anasazi in a Changing Environment, edited by Gumerman, George J., pp. 119167. Cambridge University Press, Cambridge.Google Scholar
Dingman, Lawrence S. 1994 Physical Hydrology. Prentice-Hall, Upper Saddle River, N.J. Google Scholar
Fire Effects Information System 2004 Fire Effects Information System, U.S. Department of Agriculture Forest Service, Rocky Mountain Research Station Fire Science Laboratory, Missoula, Montana. Available at www.fs.fed.us/database/feis.Google Scholar
Forde, C. Daryl 1931 Hopi Agriculture and Land Ownership. Journal of the Royal Anthropological Institute 41(4): 357–405.Google Scholar
Freeze, R. Allen, and Cherry, John A. 1979 Groundwater. Prentice-Hall, Englewood Hills, New Jersey.Google Scholar
Gardner, Franklin P, Pearce, R. Brent, and Mitchell, Roger L. 1985 Physiology of Crop Plants. Iowa State University Press, Ames.Google Scholar
Gregory, Herbert E. 1916 The Navajo Country: A Geographic and Hydrographic Reconnaissance. U.S. Geological Survey Water Supply Paper, 380. Washington, D.C. Google Scholar
Haan, Charles T. 1977 Statistical Methods in Hydrology. Iowa State University Press, Ames.Google Scholar
Haan, Charles T. 1993 Stress and Warfare among the Kayenta Anasazi of the 13th Century A.D. Fieldiana: Anthropology 88.Google Scholar
Hack, John T. 1942 The Changing Physical Environment of the Hopi Indians of Arizona. Reports of the Awatovi Expedition, Report No. 1. Peabody Museum, Harvard University, Cambridge.Google Scholar
Hanaway, J. J. 1962 Corn Growth and Composition in Relation to Soil Fertility, I: Growth of Different Plant Parts and Relation between Leaf Weight and Grain Yield. Agronomy Journal 54: 145148.Google Scholar
Hanks, R. J. 1985 Soil Water Modelling. In Hydrologic Forecasting, edited by Anderson, M. G. and Burt, T.P. pp. 1536. Wiley and Sons, New York.Google Scholar
Hegmon, Michelle 1989 Risk Reduction and Variation in Agricultural Economies: A Computer Simulation of Hopi Agriculture. Research in Economic Anthropology 11: 89121.Google Scholar
Herhahn, Cynthia L., and Hill, J. Brent 1998 Modeling Agricultural Production Strategies in the Northern Rio Grande Valley, New Mexico. Human Ecology 26(3)469487.Google Scholar
Hillel, Daniel 1972 Optimizing the Soil Physical Environment toward Greater Crop Yields. Academic Press, New York.Google Scholar
Homburg, Jeffrey A., and Sandor, Jonathan A. 1998 Agronomic Study of Two Classic Period Agricultural Fields in the Horseshoe Basin. In Vanishing River: Landscapes and Lives of the Lower Verde Valley: the Lower Verde Archaeological Project, Vol. 2: Agricultural, Subsistence, and Environmental Studies, edited by Homburg, Jeffrey A. and Ciolek-Torello, Richard, pp. 127147. Statistical Research Incorporated Press, Tucson.Google Scholar
Hoogenboom, G., Wilkens, P. W., Thornton, P. K., Jones, J. W., Hunt, L. A., and Imamura, D. T. 1999 Decision Support System for Agrotechnology Transfer Version 3.5. In DSSAT Version 3, Vol. 4, edited by Hoogenboom, G., Wilkens, P. W., and Tsuji, G. Y., pp. 136. University of Hawaii, Honolulu.Google Scholar
Jones, C. A., and Kiniry, J. R. (editors) 1986 CERES-Maize: A Simulation of Maize Growth. Texas A&M University, College Station. John Wiley and Sons, New York.Google Scholar
Jury, William A., Gardner, Wilford R., and Gardner, Walter H. 1991 Soil Physics. 5th ed. 2004 Soil Physics. John Wiley and Sons, New York.Google Scholar
Kohler, Timothy A., and Carr, Eric 1997 Swarm-Based Modeling of Prehistoric Settlement Systems in Southwestern North America. In Proceedings of Colloquium II, International Union of Prehistoric and Protohistoric Sciences, XIIIth Congress, Forli, Italy, Sept 1996, edited by Johnson, I. and North, M.. Sydney University Archaeological Methods Series, 5. Sydney University, Sydney.Google Scholar
Kohler, Timothy A., Kresl, James, West, Carla Van, Carr, Eric, and Wilshusen, Richard H. 2000 Be There Then: A Modeling Approach to Settlement Determinants and Spatial Efficiency among Late Ancestral Pueblo Populations of the Mesa Verde. In Dynamics in Human and Primate Societies: Agent-Based Modeling of Social and Spatial Processes, edited by Kohler, Timothy A. and Gumerman, George J., pp. 145178. Oxford University Press, Oxford.Google Scholar
Kohler, Timothy A., Kresl, James, West, Carla Van, Carr, Eric, and Wilshusen, Richard H. 1996 Conceptualization and Characterization of Ground-Water Systems. In Subsurface Fluid-Flow (Ground-Water and Vadose Zone) Modeling, ASTM STP 1288, edited by Ritchey, Joseph D. and Rumbaugh, James O., pp. 6180. American Society for Testing and Materials, West Con- shohocken, Pennsylvania.Google Scholar
Leith, Helmuth, and Whittaker, Robert H. 1975 The Primary Productivity of the Biosphere. Ecological Studies, 14. Springer, New York.Google Scholar
Lopes, Thomas J., and Hoffmann, John P. 1977 Geochemical Analyses of Ground-Water Ages, Recharge Rates, and Hydraulic Conductivity of the N- Aquifer, Black Mesa Area, Arizona. U.S. Geological Survey Water-Resources Investigations Report, 96-4190. Tucson. Google Scholar
ManoIescu, Kathleen 1995 Hopi Com Production. A Report on Research Conducted for the Bureau of Indian Affairs, Phoenix Area Office. MS on file at Hopi Cultural Preservation Office, Kykotsmovi, Arizona.Google Scholar
Maxwell, T. D. 1995 A Comparative Study of Prehistoric Farming Strategies. In Soil, Water, Biology, and Belief in Prehistoric and Traditional Southwestern Agriculture, edited by Wolcott Toll, H., pp. 312. New Mexico Archaeological Council Special Publication, No. 2. Albuquerque.Google Scholar
Maxwell, T. D. 2000 Looking for Adaptation: A Comparative and Engineering Analysis of Prehistoric Agricultural Technologies and Techniques in the Southwest. Unpublished Ph.D. dissertation, University of New Mexico, Albuquerque.Google Scholar
Muenchrath, D. A., Kuratomi, Maya, Sandor, Jonathan A., and Homburg, Jeffrey A. 2002 Observational Study of Maize Production Systems of Zuni Farmers in Semiarid New Mexico. Journal of Ethnobiology 22(1): 1–33.Google Scholar
Muenchrath, D. A., and Salvador, Ricardo J. 1995 Maize Productivity and Agroecology: Effects of Environment and Agricultural Practices on the Biology of Maize. In Soil, Water, Biology, and Belief in Prehistoric and Traditional Southwestern Agriculture, edited by Wolcott Toll, H., pp. 303334. New Mexico Archaeological Council Special Publication, No. 2. Albuquerque.Google Scholar
Nabhan, Gary P. 1983 Papago Fields: Arid Lands Ethnobotany and Agricultural Ecology. Unpublished Ph.D. dissertation, Department of Arid Lands Resource Sciences, University of Arizona, Tucson.Google Scholar
National Climate Data Center 2004 Hourly Precipitation Data. National Oceanic and Atmospheric Administration. Available at http://ncdc.noaa.gov/pubs/publications, accessed 2004.Google Scholar
National Resource Conservation Service 1996 Soil Survey of Hopi Area, Arizona, Parts of Coconino and Navajo Counties. National Resources Conservation Service, U.S. Department of Agriculture, in cooperation with Bureau of Indian Affairs and Arizona Agricultural Experiment Station, Tucson.Google Scholar
Norton, Jay B. 1996 Soil, Geomorphic, and Ecological Factors in Zuni Runoff Agriculture. M.S. Thesis (Agronomy), Iowa State University, Ames.Google Scholar
Norton, Jay B. 2000 Agroecology, Hydrology, and Conservation of Ephemeral Streams and Alluvial Fans, Zuni Pueblo, New Mexico. Unpublished Ph.D. dissertation, University of Montana, Missoula.Google Scholar
Norton, Jay B., Sandor, Jonathan A., and White, Carl S. 2003 Hillslope Soils and Organic Matter Dynamics within a Native American Agroecosystem on the Colorado Plateau. Soil Science Society of America Journal 67: 225234.Google Scholar
Norwood, Charles A. 2000 Water Use and Yield of Limited-Irrigated and Dryland Corn. Soil Science Society of America Journal 64: 365370.Google Scholar
Norwood, Charles A. 2001 Planting Data, Hybrid Maturity, and Plant Population Effects on Soil Water Depletion, Water Use, and Yield of Dryland Com. Agronomy Journal 93: 10341042.Google Scholar
Prevost, Deborah J., Ahrens, Robert J., and Kriz, David M. 1984 Traditional Hopi Agricultural Methods. Journal of Soil and Water Conservation, May-June: 170-171.Google Scholar
Pool, Michael D. 2002 Prehistoric Mogollon Agriculture in the Mimbres River Valley, Southwestern New Mexico: A Crop Simulation and GIS Approach. Unpublished Ph.D. dissertation, University of Texas, Austin.Google Scholar
Powell, Shirley 1983 Mobility and Adaptation: The Anasazi of Black Mesa, Arizona. Southern Illinois University Press, Carbondale. Google Scholar
Rawls, Walter J., Ahuja, Lajpat R., Brakensiek, Donald L., and Shirmohammadi, Adel 1993 Infiltration and Soil Water Movement. In Handbook of Hydrology, edited by Maidment, David R., pp. 5.1-5.51. McGraw-Hill, New York.Google Scholar
Rhode, David 1995 Estimating Agricultural Carrying Capacity in the Zuni Region, West-Central New Mexico: A Water Allocation Model. In Soil, Water, Biology, and Belief in Prehistoric and Traditional Southwestern Agriculture, edited by Wolcott Toll, H., pp. 85100. New Mexico Archaeological Council Special Publication, No. 2. Albuquerque.Google Scholar
Richards, L. A. 1931 Capillary Conduction of Liquids through Porous Media. Physics 1: 316333.Google Scholar
Ritchie, S. W., Hanaway, J. J., and Benson, G. O. 1992 How a Com Plant Develops. Cooperative Extension Service Special Report, No. 48. Iowa State University, Ames.Google Scholar
Russell, Scott C. 1983 Factors Affecting Agricultural Production in a Western Navajo Community. Unpublished Ph.D. dissertation, Arizona State University, Tempe.Google Scholar
Russell, Scott C. 1995 Searching the Soil for Clues about Southwest Prehistoric Agriculture. In Soil, Water, Biology, and Belief in Prehistoric and Traditional Southwestern Agriculture, edited by Wolcott Toll, H., pp. 119139. New Mexico Archaeological Council Special Publication, No. 2. Albuquerque.Google Scholar
Sandor, Jonathan A., Norton, Jay B., Pawluk, Roman R., Homburg, Jonathan A., Muenchrath, Deborah A., White, Carl S., Williams, S. E., Havener, C. I., and Stahl, P. D. 2002 Soil Knowledge Embodied in a Native American Runoff Agroecosystem. World Congress of Soil Science Symposium No. 31, Paper No. 981: 110.Google Scholar
Shaw, Elizabeth M. 1994 Hydrology in Practice. 3rd ed. Chapman and Hall, London.Google Scholar
Shaw, Robert H. 1988 Climate Requirement. In Com and Com Improvement, 3rd ed, edited by Sprague, George F. and Dudley, John W., pp. 609638. Agronomy Monograph, 18. American Society of Agronomy, Madison.Google Scholar
Stephen, Alexander M. 1936 Hopi Journal of Alexander M. Stephen. edited by Parsons, E. C.. Columbia University Contributions to Anthropology, 23. Columbia University Press, New York.Google Scholar
Stewart, Guy R. 1940 Conservation in Pueblo Agriculture. Scientific Monthly 56: 201220,329-340.Google Scholar
Stewart, Guy R., and Nicholson, Ernest A. 1940 Water Conservation in Hopi Agriculture. Soil Conservation 6(2): 45—48,51-53.Google Scholar
Stormont, John C., and Anderson, Clifford E. 1999 Capillary Barrier Effect from Underlying Coarser Soil Layer. Journal of Geotechnical and Geoenvironmental Engineering 125(8): 1–8.Google Scholar
Stormont, John C., and Morris, Carl E. 1998 Method to Estimate Water Storage Capacity of Capillary Barriers. Journal of Geotechnical and Geoenvironmental Engineering 124(4): 297–302.Google Scholar
Underhill, Ruth M. 1946 Work a Day Life of the Pueblos. Indian Life and Customs, 4. U.S. Office of Indian Affairs, Phoenix Indian School, Phoenix.Google Scholar
Van Genuchten, Martinus T. 1980 A Closed-Form Equation for Predicting the Hydraulic Conductivity of Unsaturated Soils. Soil Science Society of America Journal 44: 892898.Google Scholar
Van Genuchten, Martinus T. 1994 Modeling Prehistoric Agricultural Productivity in Southwestern Colorado: A GIS Approach. Reports of Investigations, 67. Department of Anthropology, Washington State University, Pullman.Google Scholar
Western Regional Climate Center 2004 Western U.S. Climate Historical Summaries. Climatological Data Summaries. Available at www.wrcc.dri. edu/climsum.html, accessed 2004. Google Scholar
Whiting, Alfred E. 1936 Hopi Indian Agriculture: I, Background. Museum of Northern Arizona Museum Notes 8(10): 51–53.Google Scholar