A rough set approach to the treatment of continuous-valued attributes in multi-concept classification for mechanical diagnosis
Published online by Cambridge University Press: 27 July 2001
Abstract
The efficient use of critical machines or equipment in a manufacturing system requires reliable information about their current operating conditions. This information is often used as a basis for machine condition monitoring and fault diagnosis—which essentially is an endeavor of knowledge extraction. Rough set theory provides a novel way to knowledge acquisition, especially when dealing with vagueness and uncertainty. It focuses on the discovery of patterns in incomplete and/or inconsistent data. However, rough set theory requires the data analyzed to be in discrete manner. This paper proposes a novel approach to the treatment of continuous-valued attributes in multi-concept classification for mechanical diagnosis using rough set theory. Based on the proposed approach, a prototype system called RClass-Plus has been developed. RClass-Plus is validated using a case study on mechanical fault diagnosis. Details of the validation are described.
- Type
- Research Article
- Information
- Copyright
- 2001 Cambridge University Press
- 4
- Cited by