Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-27T13:32:48.580Z Has data issue: false hasContentIssue false

A decision model for making decisions under epistemic uncertainty and its application to select materials

Published online by Cambridge University Press:  03 August 2017

Sweety Shahinur
Affiliation:
Graduate School of Engineering, Kitami Institute of Technology, Kitami, Hokkaido, Japan
A.M.M. Sharif Ullah*
Affiliation:
Department of Mechanical Engineering, Kitami Institute of Technology, Kitami, Hokkaido, Japan
Muhammad Noor-E-Alam
Affiliation:
Department of Mechanical and Industrial Engineering, Northeastern University, Boston, Massachusetts, USA
Hiroyuki Haniu
Affiliation:
Department of Mechanical Engineering, Kitami Institute of Technology, Kitami, Hokkaido, Japan
Akihiko Kubo
Affiliation:
Department of Mechanical Engineering, Kitami Institute of Technology, Kitami, Hokkaido, Japan
*
Reprint requests to: A.M.M. Sharif Ullah, Department of Mechanical Engineering, Kitami Institute of Technology, 165 Koen-cho, Kitami, Hokkaido 090-8507, Japan. E-mail: [email protected]

Abstract

This study deals with both a decision model for making decisions under epistemic uncertainty and how to use it for selecting optimal materials under the same uncertainty. In particular, the proposed decision model employs a set of possibilistic objective functions defined by fuzzy numbers to handle a set of conflicting criteria. In addition, the model can calculate the compliance of a piece of decision-relevant (imprecise) information with a given objective function. Moreover, the model is capable to aggregate the calculated compliances for the sake of ranking a given set of alternatives against the set of conflicting criteria. The problem of selecting materials for making the body of a vehicle is considered as an example. In this problem, the indices for selecting the materials are unknown because the specifications regarding the vehicle body are not given. In addition, the data relevant to material properties entails a great deal of imprecision. The presented decision model can quantify the above-mentioned epistemic uncertainty in a lucid manner and generate a list of optimal materials.

Type
Special Issue Articles
Copyright
Copyright © Cambridge University Press 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Achiche, S., & Ahmed-Kristensen, S. (2011). Genetic fuzzy modeling of user perception of three-dimensional shapes. Artificial Intelligence for Engineering Design, Analysis and Manufacturing 25(1), 93107. doi:10.1017/S0890060410000466 Google Scholar
Allwood, J.M., Ashby, M.F., Gutowski, T.G., & Worrell, E. (2011). Material efficiency: a white paper. Resources, Conservation and Recycling 55(3), 362381. doi:10.1016/j.resconrec.2010.11.002 Google Scholar
Antonsson, E.K., & Otto, K.N. (1995). Imprecision in engineering design. Journal of Mechanical Design 117(B), 2532. doi:10.1115/1.2836465 CrossRefGoogle Scholar
Ashby, M.F. (2005). Materials Selection in Mechanical Design, 3rd ed. Oxford: Butterworth-Heinemann.Google Scholar
Booker, J.M., & Ross, T.J. (2011). An evolution of uncertainty assessment and quantification. Scientia Iranica 18(3), 669676. doi:10.1016/j.scient.2011.04.017 Google Scholar
Dempster, A.P. (1968). A generalization of Bayesian inference. Journal of the Royal Statistical Society. Series B (Methodological) 30(2), 205247.CrossRefGoogle Scholar
Dempster, A.P. (2008). A generalization of Bayesian inference. In Classic Works of the Dempster-Shafer Theory of Belief Functions (Yager, R.R., & Liu, L., Eds.), pp. 73104. Berlin: Springer.CrossRefGoogle Scholar
Dijkman, J.G., van Haeringen, H., & de Lange, S.J. (1983). Fuzzy numbers. Journal of Mathematical Analysis and Applications 92(2), 301341. doi:10.1016/0022-247X(83)90253-6 Google Scholar
Dubois, D., Foulloy, L., Mauris, G., & Prade, H. (2004). Probability-possibility transformations, triangular fuzzy sets, and probabilistic inequalities. Reliable Computing 10(4), 273297. doi:10.1023/B:REOM.0000032115.22510.b5 Google Scholar
Dubois, D., & Prade, H. (1978). Operations on fuzzy numbers. International Journal of Systems Science 9(6), 613626. doi:10.1080/00207727808941724 Google Scholar
Dubois, D., & Prade, H. (1988). Possibility Theory. New York: Plenum Press.Google Scholar
Gurnani, A.P., & Lewis, K. (2005). Robust multiattribute decision making under risk and uncertainty in engineering design. Engineering Optimization 37(8), 813830. doi:10.1080/03052150500340520 Google Scholar
Huang, G.Q., & Jiang, Z. (2002). FuzzySTAR: fuzzy set theory of axiomatic design review. Artificial Intelligence for Engineering Design, Analysis and Manufacturing 16(4), 291302. doi:10.1017/S0890060402164031 Google Scholar
Jiang, Z., Li, W., Apley, D.W., & Chen, W. (2015). A spatial-random-process based multidisciplinary system uncertainty propagation approach with model uncertainty. Journal of Mechanical Design 137(10), 101402101402. doi:10.1115/1.4031096 CrossRefGoogle Scholar
Joslyn, C.A., & Booker, J.M. (2004). Generalized information theory for engineering modeling and simulation. In Engineering Design Reliability Handbook (Nikolaidis, E., Ghiocel, D.M., & Singhal, S., Eds.). Boca Raton, FL: CRC Press.Google Scholar
Khozaimy, O., Al-Dhaheri, A., & Ullah, A.M.M.S. (2011). A decision-making approach using point-cloud-based granular information. Applied Soft Computing 11(2), 25762586. doi:10.1016/j.asoc.2010.10.007 Google Scholar
Klir, G.J. (1990). A principle of uncertainty and information invariance. International Journal of General Systems 17(2–3), 249275. doi:10.1080/03081079008935110 Google Scholar
Klir, G.J. (1999). On fuzzy-set interpretation of possibility theory. Fuzzy Sets and Systems 108(3), 263273. doi:10.1016/S0165-0114(97)00371-0 Google Scholar
Matsumura, T., & Haftka, R.T. (2013). Reliability based design optimization modeling future redesign with different epistemic uncertainty treatments. Journal of Mechanical Design 135(9), 091006091006. doi:10.1115/1.4024726 Google Scholar
Mayyas, A.T., Mayyas, A., Qattawi, A., & Omar, M.A. (2012). Sustainable lightweight vehicle design: a case study of eco-material selection for body-in-white. International Journal of Sustainable Manufacturing 2(4), 317337. doi:10.1504/IJSM.2012.048586 CrossRefGoogle Scholar
Mayyas, A.T., Qattawi, A., Omar, M., & Shan, D. (2012). Design for sustainability in automotive industry: a comprehensive review. Renewable and Sustainable Energy Reviews 16(4), 18451862. doi:10.1016/j.rser.2012.01.012 Google Scholar
McDowell, D.L., Panchal, J.H., Choi, H.-J., Seepersad, C.C., Allen, J.K., & Mistree, F. (2010). Managing Design Complexity Integrated Design of Multiscale, Multifunctional Materials and Products. Boston: Butterworth-Heinemann.Google Scholar
Nikolaidis, E., Chen, S., Cudney, H., Haftka, R.T., & Rosca, R. (2003). Comparison of probability and possibility for design against catastrophic failure under uncertainty. Journal of Mechanical Design 126(3), 386394. doi:10.1115/1.1701878 Google Scholar
Nikolaidis, E., Ghiocel, D.M., & Singhal, S. (Eds.) (2004). Engineering Design Reliability Handbook. Boca Raton, FL: CRC Press.Google Scholar
Noor-E-Alam, M., Lipi, T.F., Hasin, M.A.A., & Sharif Ullah, A.M.M. (2011). Algorithms for fuzzy multi expert multi criteria decision making (ME-MCDM). Knowledge-Based Systems 24(3), 367377. doi:10.1016/j.knosys.2010.10.006 Google Scholar
Omar, M.A. (2011). The Automotive Body Manufacturing Systems and Processes. Hoboken, NJ: Wiley.Google Scholar
Poulikidou, S., Schneider, C., Björklund, A., Kazemahvazi, S., Wennhage, P., & Zenkert, D. (2015). A material selection approach to evaluate material substitution for minimizing the life cycle environmental impact of vehicles. Materials & Design, 83, 704712. doi:10.1016/j.matdes.2015.06.079 Google Scholar
Rashid, M.M., Sharif Ullah, A.M.M., Tamaki, J., & Kubo, A. (2011). Evaluation of hard materials using eco-attributes. Advanced Materials Research 325, 693698.Google Scholar
Rezaee, R., Brown, J., Augenbroe, G., & Kim, J. (2015). Assessment of uncertainty and confidence in building design exploration. Artificial Intelligence for Engineering Design, Analysis and Manufacturing 29(4), 429441. doi:10.1017/S0890060415000426 Google Scholar
Ross, T.J., Booker, J.M., & Montoya, A.C. (2013). New developments in uncertainty assessment and uncertainty management. Expert Systems With Applications 40(3), 964974. doi:10.1016/j.eswa.2012.05.054 Google Scholar
Shafer, G. (1976). A Mathematical Theory of Evidence. Princeton, NJ: Princeton University Press.Google Scholar
Shamasuzzaman, M., Sharif Ullah, A.M.M., & Dweiri, F.T. (2013). A fuzzy decision model for the selection of coals for industrial use. International Journal of Industrial and Systems Engineering 14(2), 230244.Google Scholar
Sharif Ullah, A.M.M., Fuji, A., Kubo, A., & Tamaki, J. (2014). Analyzing the sustainability of bimetallic components. International Journal of Automation Technology 8(5), 745753.Google Scholar
Sharif Ullah, A.M.M., Rashid, M.M., & Tamaki, J. (2012). On some unique features of C-K theory of design. CIRP Journal of Manufacturing Science and Technology 5(1), 5566. doi:10.1016/j.cirpj.2011.09.001 Google Scholar
Sharif Ullah, A.M.M., Sato, M., Watanabe, M., & Rashid, M.M. (2016). Integrating CAD, TRIZ, and customer needs. International Journal of Automation Technology 10(2), 132143.Google Scholar
Sharif Ullah, A.M.M., & Shamsuzzaman, M. (2013). Fuzzy Monte Carlo simulation using point-cloud-based probability-possibility transformation. Simulation 89(7), 860875. doi:10.1177/0037549713482174 Google Scholar
Sharif Ullah, A.M.M., & Tamaki, J. (2011). Analysis of Kano-model-based customer needs for product development. Systems Engineering 14(2), 154172. doi:10.1002/sys.20168 Google Scholar
Ullah, A.M.M.S. (2005a). A fuzzy decision model for conceptual design. Systems Engineering 8(4), 296308. doi:10.1002/sys.20038 Google Scholar
Ullah, A.M.M.S. (2005b). Handling design perceptions: an axiomatic design perspective. Research in Engineering Design 16(3), 109117. doi:10.1007/s00163-005-0002-2 Google Scholar
Ullah, A.M.M.S. (2008). Logical interaction between domain knowledge and human cognition in design. International Journal of Manufacturing Technology and Management 14(1–2), 215227. doi:10.1504/IJMTM.2008.017496 Google Scholar
Ullah, A.M.M.S., & Harib, K.H. (2008). An intelligent method for selecting optimal materials and its application. Advanced Engineering Informatics 22(4), 473483. doi:10.1016/j.aei.2008.05.006 Google Scholar
Ullah, A.M.M.S., Hashimoto, H., Kubo, A., & Tamaki, J. (2013). Sustainability analysis of rapid prototyping: material/resource and process perspectives. International Journal of Sustainable Manufacturing 3(1), 2036. doi:10.1504/IJSM.2013.058640 Google Scholar
Walley, P. (1991). Statistical Reasoning With Imprecise Probabilities. London: Chapman Hall.Google Scholar
Walley, P. (2000). Towards a unified theory of imprecise probability. International Journal of Approximate Reasoning 24(2–3), 125148. doi:10.1016/S0888-613X(00)00031-1 Google Scholar
Youn, B.D., & Choi, K.K. (2004). Selecting probabilistic approaches for reliability-based design optimization. AIAA Journal 42(1), 124131. doi:10.2514/1.9036 Google Scholar
Zadeh, L.A. (1975). The concept of a linguistic variable and its application to approximate reasoning. Information Sciences Part I (8), 199249; Part II (8), 301–357; Part III (9), 43–80.Google Scholar
Zadeh, L.A. (1978). Fuzzy sets as a basis for a theory of possibility. Fuzzy Sets and Systems 1(1), 328. doi:10.1016/0165-0114(78)90029-5 Google Scholar
Zadeh, L.A. (2005). Toward a generalized theory of uncertainty (GTU)––an outline. Information Sciences 172(1–2), 140. doi:10.1016/j.ins.2005.01.017 Google Scholar