Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-27T05:26:26.147Z Has data issue: false hasContentIssue false

Automated synthesis of mechanical vibration absorbers using genetic programming

Published online by Cambridge University Press:  12 June 2008

Jianjun Hu
Affiliation:
Department of Computer Science and Engineering, University of South Carolina, Columbia, South Carolina, USA
Erik D. Goodman
Affiliation:
Department of Electrical and Computer Engineering, Michigan State University, East Lansing, Michigan, USA
Shaobo Li
Affiliation:
Key Laboratory of Advanced Manufacturing Technology, Ministry of Education, Guizhou University, Caijiaguan, Guiyang, People's Republic of China
Ronald Rosenberg
Affiliation:
Department of Mechanical Engineering, Michigan State University, East Lansing, Michigan, USA

Abstract

Conceptual innovation in mechanical engineering design has been extremely challenging compared to the wide applications of automated design systems in digital circuits. This paper presents an automated methodology for open-ended synthesis of mechanical vibration absorbers based on genetic programming and bond graphs. It is shown that our automated design system can automatically evolve passive vibration absorbers that have performance equal to or better than the standard passive vibration absorbers invented in 1911. A variety of other vibration absorbers with competitive performance are also evolved automatically using a desktop PC in less than 10 h.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Ando, S., & Iba, H. (2000). Linear Genome Methodology for Analog Circuit Design, Technical Report. University of Tokyo, School of Engineering, Information and Communication Department.Google Scholar
Fan, Z., Hu, J., Seo, K., Goodman, E.D., Rosenberg, R.C., & Zhang, B. (2001). Bond graph representation and GP for automated analog filter design. Genetic and Evolutionary Computation Conf. Late-Breaking Papers, pp. 8186.Google Scholar
Fan, Z., Seo, K., Hu, J., Goodman, E.D., & Rosenberg, R.C. (2004). A novel evolutionary engineering design approach for mixed-domain systems. Journal of Engineering Optimization 36(2), 127147.CrossRefGoogle Scholar
Filipovic, D., & Schroder, D. (1998). Bandpass vibration absorber. Journal of Sound and Vibration 214(3), 553566.CrossRefGoogle Scholar
Frahm, H. (1911). Device for damping vibrations of bodies. US Patent 989,958.Google Scholar
Franchek, M.A., Ryan, M., & Bernhard, R.J. (1995). Adaptive-passive vibration control. Journal of Sound and Vibration 189(5), 565585.CrossRefGoogle Scholar
Hirata, T., Koizumi, S., & Takahashi, R. (1995). H control of railroad vehicle active suspension. Automatica 31, 1324.CrossRefGoogle Scholar
Hu, J., Goodman, E., & Rosenberg, R. (2004). Topological search in automated mechatronic system synthesis using bond graphs and genetic programming. Proc. American Control Conf. ACC 2004.Google Scholar
Hu, J., Goodman, E., Seo, K., Fan, Z., & Rosenberg, R. (2005). The hierarchical fair competition (hfc) framework for sustainable evolutionary algorithms. Evolutionary Computation, 13(2).CrossRefGoogle ScholarPubMed
Jalili, N. (2002). A comparative study and analysis of semi-active vibration-control systems. Journal of Vibration and Acoustics 124, 593.CrossRefGoogle Scholar
Karnopp, D. (1995). Active and semi-active vibration isolation. ASME Journal of Manufacturing and Science Engineering 117, 177185.Google Scholar
Karnopp, D., Margolis, D.L., & Rosenberg, R.C. (2000). System Dynamics: Modeling and Simulation of Mechatronic Systems, 3rd ed. New York: Wiley.Google Scholar
Koza, J.R., Andre, D., Bennett, F.H. III, & Keane, M. (1999). Genetic Programming 3: Darwinian Invention and Problem Solving. San Mateo, CA: Morgan Kaufmann.Google Scholar
Koza, J.R., Bennett, F.H. III, Andre, D., Keane, M.A., & Dunlap, F. (1997). Automated synthesis of analog electrical circuits by means of genetic programming. IEEE Transactions on Evolutionary Computation 1(2), 109128.CrossRefGoogle Scholar
Koza, J.R., Keane, M.A., Streeter, M.J., Mydlowec, W., Yu, J., & Lanza, G. (2003). Genetic Programming IV: Routine Human-Competitive Machine Intelligence. New York: Kluwer Academic.Google Scholar
Koza, J.R., Keane, M.A., Yu, J., Bennett, F.H. III, & Mydlowec, W. (2000). Automatic creation of human-competitive programs and controllers by means of genetic programming. Genetic Programming and Evolvable Machines 1(1/2), 121164.CrossRefGoogle Scholar
Lipson, H. (2004). How to draw a straight line using a GP: benchmarking evolutionary design against 19th century kinematic synthesis. Late-Breaking Papers at the 2004 Genetic and Evolutionary Computation Conf.Google Scholar
Lohn, J., & Colombano, S. (1999). A circuit representation technique for automated circuit design. IEEE Transactions on Evolutionary Computation 3(3), 205219.Google Scholar
Morys, B., & Kuntze, H.-B. (1996). Entstehung und ausregelung von strukturschwingungen bei hochgeschwindigkeitszugen, verursacht durch radunrundheiten. VDI Berichte 1282, 449460.Google Scholar
Nemin, D.C., Lin, Y., & Osegueda, R.A. (1994). Semi-active motion control using variable stiffness. Journal of Structural Division, ASCE 120(4), 12911306.Google Scholar
Olgac, N. (1995). Delayed resonators as active dynamic absorbers. U.S. patent specification 5,431,261.Google Scholar
Olgac, N., Elmali, H., & Vijayan, S. (1996). Introduction to the dual frequency fixed delayed resonator. Journal of Sound and Vibration 189(3), 355367.Google Scholar
Olgac, N., & Holm-Hansen, B. (1994). A novel active vibration absorption technique: delayed resonator. Journal of Sound and Vibration 176, 93104.CrossRefGoogle Scholar
Rechenberg, I. (1973). Evolutionsstrategie: Optimierung technischer Systeme nach Prinzipien der biologischen Evolution. Stuttgart: Frommann-Holzboog Verlag.Google Scholar
Seo, K., Fan, Z., Hu, J., Goodman, E.D., & Rosenberg, R.C. (2003 a). Dense and switched modular primitives for bond graph model design. Genetic and Evolutionary Computation Conf., GECCO-2003, pp. 17641775.CrossRefGoogle Scholar
Seo, K., Fan, Z., Hu, J., Goodman, E.D., & Rosenberg, R.C. (2003 b). Toward an automated design method for multi-domain dynamic systems using bond graphs and genetic programming. Mechatronics 13(8–9), 851885.Google Scholar
Seo, K., Hu, J., Fan, Z., Goodman, E.D., & Rosenberg, R.C. (2002). Automated design approaches for multi-domain dynamic systems using bond graphs and genetic programming. The International Journal of Computers, Systems and Signals 3(1), 5570.Google Scholar
Soong, T. (1990). Active Structural Control: Theory and Practice. New York: Wiley.Google Scholar
Spector, L., Barnum, H., & Bernstein, H.J. (1998). Genetic programming for quantum computers. Genetic Programming 1998: Proc. 3rd Annual Conf., pp. 365373. San Francisco, CA: Morgan Kaufmann.Google Scholar
Spencer, B.F. Jr., Dyke, S.J., & Deoskar, H. (1997). Benchmark problems in structural control—part I: active mass driver. Proc. ASCE Structures Congr.Google Scholar
Strehlow, H., & Rapp, H. (1992). Smart materials for helicopter rotor active control. AGARD Conf. Proc. 531, 5.15.16.Google Scholar
Tay, E., Flowers, W., & Barrus, J. (1998). Automated generation and analysis of. Research in Engineering Design 10(1), 1529.CrossRefGoogle Scholar