Optimal turning gait of a six-legged robot using a GA-fuzzy approach
Published online by Cambridge University Press: 31 October 2000
Abstract
This paper describes a new method for generating the turning-gait of a six-legged robot using a combined genetic algorithm (GA)-Fuzzy approach. The main drawback of the traditional methods of gait generation is their high computational load. Thus, there is still a need for the development of a computationally tractable algorithm that can be implemented online to generate stable gait of a multilegged robot. In the proposed genetic-fuzzy system, the fuzzy logic controllers (FLCs) are used to generate the stable gait of a hexapod and a GA is used to improve the performance of the FLCs. The effectiveness of the proposed algorithm is tested on a number of turning-gait generation problems of a hexapod that involve translation as well as rotation of the vehicle. The hexapod will have to take a sharp circular turn (either clockwise or counter-clockwise) with minimum number of ground legs having the maximum average kinematic margin. Moreover, the stability margin should lie within a certain range to ensure static stability of the vehicle. Each leg of a six-legged robot is controlled by a separate FLC and the performance of the controllers is improved by using a GA. It is to be noted that the actual optimization is done off-line and the hexapod can use these optimized FLCs to navigate in real-world scenarios. As an FLC is computationally less expensive, the proposed algorithm will be faster compared with the traditional methods of gait-generation, which include both graphical as well as analytical methods. The GA-tuned FLCs are found to perform better than the author-defined FLCs.
- Type
- Research Article
- Information
- Copyright
- 2000 Cambridge University Press
- 17
- Cited by