Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-18T17:23:26.989Z Has data issue: false hasContentIssue false

A declarative framework for work process configuration

Published online by Cambridge University Press:  20 April 2011

Wolfgang Mayer
Affiliation:
University of South Australia, Adelaide, Australia
Markus Stumptner
Affiliation:
University of South Australia, Adelaide, Australia
Peter Killisperger
Affiliation:
University of South Australia, Adelaide, Australia
Georg Grossmann
Affiliation:
University of South Australia, Adelaide, Australia

Abstract

This article describes the technical principles and representation of a constraint-based configuration method for work processes. Methods developed for the configuration of modular systems comprising components have traditionally adopted a representation where the properties and compatibility requirements are expressed as constraints associated with individual components. However, this representation does not accurately capture constraints on paths and subprocesses and is therefore unsuitable for process configuration. This article extends established constraint-based configuration methods with a constraint language for specifying properties of execution paths in work processes. A framework for semiautomated process customization is presented. It integrates the extended constraint language with a metamodel of the work processes in an organization and allows to adapt generic work processes to fit the requirements of specific development projects. Heuristic search methods are applied to build valid process configurations by incrementally resolving constraint violations. The declarative framework facilitates the adaptation of abstract work processes as well as the validation and repair of existing processes. The approach was developed in the context of a real-world system of complex design and development processes where it was shown that significant process improvements and reduction in effort required to edit process models can be achieved.

Type
Special Issue Articles
Copyright
Copyright © Cambridge University Press 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Albert, P., Henocque, L., & Kleiner, M. (2005). Configuration-based workflow composition. Proc. IEEE Int. Conf. Web Services (ICWS), pp. 285292, Orlando, FL.CrossRefGoogle Scholar
Allen, J.F. (1983). Maintaining knowledge about temporal intervals. Communications of the ACM 26(11), 823843.CrossRefGoogle Scholar
Armbrust, O., Katahira, M., Miyamoto, Y., Münch, J., Nakao, H., & Ocampo, A. (2008). Scoping software process models—initial concepts and experience from defining space standards. Proc. Int. Conf. Software Process (ICSP'08), LNCS, Vol. 5007, pp. 160172. Berlin: Springer.CrossRefGoogle Scholar
Asikainen, T., & Männistö, T. (2009). A metamodelling approach to configuration knowledge representation. IJCAI'09 Workshop on Configuration, pp. 916, Pasadena, CA.Google Scholar
Bajec, M., Vavpotič, D., & Krisper, M. (2007). Practice-driven approach for creating project- specific software development methods. Information & Software Technology 49(4), 345365.CrossRefGoogle Scholar
Beckert, B., & Trentelman, K. (2005). Second-order principles in specification languages for object-oriented programs. Proc. LPAR, LNCS, Vol. 3835, pp. 154168. Berlin: Springer.Google Scholar
Berglund, A., Boag, S., Chamberlin, D., Fernández, M.F., Kay, M., Robie, J., and Siméon, J. (2007). XML Path Language (XPath) 2.0. World Wide Web Consortium, Recommendation REC-xpath20-20070123.Google Scholar
Brinkkemper, S. (1996). Method engineering: engineering of information systems development methods and tools. Information & Software Technology 38(4), 275280.CrossRefGoogle Scholar
Clarke, E.M., Grumberg, O., Jha, S., Lu, Y., & Veith, H. (2003). Counterexample-guided abstraction refinement for symbolic model checking. Journal of the ACM 50(5), 752794.CrossRefGoogle Scholar
Cytron, R., Ferrante, J., Rosen, B.K., Wegman, M.N., & Zadeck, F.K. (1991). Efficiently computing static single assignment form and the control dependence graph. ACM Transactions on Programming Languages and Systems 13(4), 451490.CrossRefGoogle Scholar
Dausch, M., & Hsu, C. (2006). Engineering service products: the case of mass-customising service agreements for heavy equipment industry. International Journal of Services Technology and Management 7(1), 3251.CrossRefGoogle Scholar
Egyed, A., Letier, E., & Finkelstein, A. (2008). Generating and evaluating choices for fixing inconsistencies in UML design models. Proc. IEEE Conf. Automated Software Engineering (ASE'08), pp. 99108, L'Aquila, Italy.CrossRefGoogle Scholar
Felfernig, A., Friedrich, G., & Jannach, D. (2001). Conceptual modeling for configuration of mass-customizable products. Artificial Intelligence in Engineering 15(2), 165176.CrossRefGoogle Scholar
Fitzgerald, B., Russo, N., & O'Kane, T. (2003). Software development method tailoring at Motorola. Communications of the ACM 46(4), 6570.CrossRefGoogle Scholar
Ginsberg, M., & Quinn, L. (1995). Process tailoring and the software capability maturity model. Technical report. Pittsburgh, PA: Software Engineering Institute (SEI).CrossRefGoogle Scholar
Heiskala, M., Tiihonen, J., & Soininen, T. (2005). A conceptual model for configurable services. Proc. IJCAI'05 Workshop on Configuration, Edinburgh, Scotland.Google Scholar
IDS Scheer. (2006). ARIS design platform. Accessed September 8, 2010, at http://www.ids-scheer.com/us/en/ARIS/ARIS_Platform/ARIS_Design_Platform/32390.htmlGoogle Scholar
Jensen, K. (1997). Coloured Petri Nets. Basic Concepts, Analysis Methods and Practical Use, Vol. 1, 2nd ed.Berlin: Springer–Verlag.CrossRefGoogle Scholar
Keller, G., Nüttgens, M., & Scheer, A. (1992). Semantische Prozessmodellierung auf der Grundlage Ereignisgesteuerter Prozessketten (EPK). Technical Report 89, Universität des Saarlandes.Google Scholar
Killisperger, P. (2010). Instantiation of information systems development processes. PhD Thesis. University of South Australia, School of Computer and Information Science.Google Scholar
Killisperger, P., Stumptner, M., Peters, G., & Stückl, T. (2008). Challenges in software design in large corporations—a case study at Siemens AG. Proc. Int. Conf. Enterprise Information Systems (ICEIS) (3-2), pp. 123128, Barcelona, Spain.Google Scholar
Kindler, E. (2006). On the semantics of EPCs: resolving the vicious circle. Data & Knowledge Engineering 56(1), 2340.CrossRefGoogle Scholar
Latvala, T., Biere, A., Heljanko, K., & Junttila, T.A. (2005). Simple is better: efficient bounded model checking for past LTL. Proc. VMCAI, pp. 380395, LNCS, Vol. 3385. Berlin: Springer.Google Scholar
List, B., & Korherr, B. (2005). A UML 2 profile for business process modeling. In Proc. ER (Workshops), LNCS, Vol. 3770, pp. 8596. Berlin: Springer.Google Scholar
Ly, L.T., Rinderle, S., & Dadam, P. (2008). Integration and verification of semantic constraints in adaptive process management systems. Data & Knowledge Engineering 64(1), 323.CrossRefGoogle Scholar
Magro, D. (2010). F: conceptual language-based configuration. AI Communications 23(1), 146.CrossRefGoogle Scholar
Mailharro, D. (1998). A classification and constraint-based framework for configuration. Artificial Intelligence for Engineering, Design, Analysis and Manufacturing 12(4), 383397.CrossRefGoogle Scholar
Marcus, S., & McDermott, J. (1989). SALT: a knowledge-acquisition language for propose-and-revise systems. Artificial Intelligence 39(1), 137.CrossRefGoogle Scholar
Mayer, W., Thiagarajan, R., & Stumptner, M. (2009). Service composition as generative constraint satisfaction. Proc. IEEE Int. Conf. Web Services (ICWS), pp. 888895, Los Angeles.CrossRefGoogle Scholar
Mendling, J. (2009). Empirical studies in process model verification. T. Petri Nets and Other Models of Concurrency 2, 208224.CrossRefGoogle Scholar
Milner, R. (1990). Operational and algebraic semantics of concurrent processes. In Handbook of Theoretical Computer Science. Volume B: Formal Models and Semantics (B), pp. 12011242. Cambridge, MA: MIT Press.Google Scholar
Mittal, S. (1990). Reasoning about resource constraints in configuration tasks. Technical report, Xerox PARC.Google Scholar
Muchnick, S.S. (1997). Advanced Compiler Design and Implementation. Pasadena, CA: Morgan Kaufmann.Google Scholar
Niknafs, A., & Ramsin, R. (2008). Computer-aided method engineering: an analysis of existing environments. Proc. 20th Int. Conf. Advanced Information Systems Engineering (CAiSE'08), pp. 525540. Berlin: Springer.CrossRefGoogle Scholar
Object Management Group. (2006). Object constraint language: OCL specification v2.0 [Computer software]. http://www.omg.org/spec/OCL/2.0/PDFGoogle Scholar
Rosemann, M., & van der Aalst, W.M.P. (2007). A configurable reference modelling language. Information Systems 32(1), 123.CrossRefGoogle Scholar
Rossi, F., Beek, P.v., & Walsh, T. (2006). Handbook of Constraint Programming. New York: Elsevier Science.Google Scholar
Scheer, A.-W. (2000). ARIS—Business Process Modeling, 3rd ed.New York: Springer–Verlag.CrossRefGoogle Scholar
Schmelzer, H., & Sesselmann, W. (2004). Geschäftsprozessmanagement in der Praxis: Produktivität steigern—Wert erhöhen—Kunden zufriedenstellen, 4th ed.Munich: Hanser Verlag.Google Scholar
Sirin, E., Parsia, B., Wu, D., Hendler, J.A., & Nau, D.S. (2004). HTN planning for Web Service composition using SHOP2. Journal of Web Semantics 1(4), 377396.CrossRefGoogle Scholar
Soininen, T., Tiihonen, J., Männistö, T., & Sulonen, R. (1998). Towards a general ontology of configuration. Artificial Intelligence for Engineering, Design, Analysis and Manufacturing 12(4), 357372.CrossRefGoogle Scholar
Stumptner, M., Friedrich, G., & Haselböck, A. (1998). Generative constraint-based configuration of large technical systems. Artificial Intelligence for Engineering, Design, Analysis and Manufacturing 12(4), 307320.CrossRefGoogle Scholar
Thomas, O., & Fellmann, M. (2007). Semantic EPC: enhancing process modeling using ontology languages. Proc. SBPM, CEUR Workshop, Vol. 251. Accessed at http://www.CEUR-WS.orgGoogle Scholar
Van der Aalst, W.M.P. (1999). Formalization and verification of event-driven process chains. Information and Software Technology 41(10), 639650.CrossRefGoogle Scholar
Van der Aalst, W.M.P. (2000). Workflow verification: finding control-flow errors using petri-net-based techniques. In Business Process Management, Models, Techniques, and Empirical Studies (van der Aalst, W.M.P., Desel, J., & Overweis, A., Eds.), pp. 161183. Berlin: Springer–Verlag.CrossRefGoogle Scholar
Van der Aalst, W.M.P., & van Hee, K.M. (2004). Workflow Management—Models, Methods, and Systems. Cambridge, MA: MIT Press.Google Scholar
Weber, B., Reichert, M., & Rinderle-Ma, S. (2008). Change patterns and change support features enhancing flexibility in process-aware information systems. Data & Knowledge Engineering 66(3), 438466.CrossRefGoogle Scholar
WFMC. (2008). WFMC-TC-1025-Oct-10-08A (final XPDL 2.1 specification). Technical report, WFMC. Accessed April 28, 2009, at http://www.wfmc.orgGoogle Scholar
Zeller, A. (2002). Isolating cause-effect chains from computer programs. Proc. Foundations of Software Engineering (SIGSOFT FSE), pp. 110, Charleston, SC.Google Scholar