Published online by Cambridge University Press: 07 June 2016
Similar solutions of the boundary layer equations for incompressible flow with external velocity u1 ∞ xm and suction velocity υw ∞ x(m-1)/2 are obtained for negative values of m, in the range −0-1 to −0-9, and a wide range of suction quantities.
The results are used, in combination with, existing solutions for positive m, to provide a guide to the ranges of m and suction parameter [(υw/u1√x] for which a general form of the classical asymptotic solution can be regarded as a good approximation to the exact solution.
It is shown that the values of both m and suction parameter are generally important in this comparison, but for values of the latter greater than about 8 the approximation is a very good one for all values of m considered. For m≃−0·14 the approximation is good (i.e. the error is less than about 1 per cent) down to values of the suction parameter as low as 1·0.