Published online by Cambridge University Press: 07 June 2016
This paper describes an experimental study of the interaction between a hypersonic flow and a transverse jet which issues radially from a slender conical model. Measurements in the region far upstream of the jet show qualitative agreement with free interaction analyses, while downstream a film cooling effect appears to reduce the heat transfer rate substantially. The effect of changes in Reynolds number, jet pressure ratio and mass flux is examined and compared with similar phenomena caused by fixed disturbances such as compression corners. The shape of the interaction shock wave is found to agree with the predictions of the second-order blast wave theory. Finally a correlation is found between the boundary layer separation length and a local mass flux parameter.