Published online by Cambridge University Press: 07 June 2016
For many conventional aircraft, the thickness of the wing and fuselage can be represented approximately by source distributions in the plane of the wing and on the axis of the fuselage. Such aircraft may be considered as having essentially planar thickness distributions. However, missiles with cruciform wings, biplane arrangements, “ ring ” wings and so on, require non-planar source distributions to represent the wing and fuselage thickness. For this reason, the term “ spatial thickness distribution ” is used.
To simplify the investigation of spatial thickness distributions, a singularity representing an element of volume is introduced. It is shown that the optimum distribution of such elements in a prescribed space gives rise to a minimum wave drag value consistent with that obtained for a Sears- Haack optimum body of revolution.