Published online by Cambridge University Press: 07 June 2016
The problem of unsteady hypersonic and supersonic flow with attached shock wave past wedge-like bodies is studied, using as a basis the assumption that the unsteady flow is a small perturbation from a steady uniform wedge flow. It is formulated in the most general case and applicable for any motion or deformation of the body. A method of solution to the perturbation equations is given by expanding the flow quantities in power series in M−2, M being the Mach number of the steady wedge flow. It is shown how solutions of successive orders in the series may be calculated. In particular, the second-order solution is given and shown to give improvements uniformly over the first-order solution.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.