Article contents
Validation study for prediction of iced aerofoil aerodynamics
Published online by Cambridge University Press: 03 February 2016
Abstract
Ice accretions can significantly change the aerodynamic performance of wings and rotor blades. Significant performance degradation can occur when ice accreations cause regions of separated flow, to predict this change implies, at a minimum, the solution of the Reynolds-Averaged Navier-Stokes equations. This paper presents validation for two generic cases involving the flow over aerofoil sections with added synthetic ice shapes. Results were obtained for two aerofoils, namely the NACA 23012 and a generic multi-element configuration. These results are compared with force and pressure coefficient measurements obtained in the NASA LTPT wind-tunnel for the NACA 23012, and force, PIV and boundary-layer measurements obtained at DNW for the multi-element case. The level of agreement is assessed in the context of industrial requirements.
- Type
- Research Article
- Information
- Copyright
- Copyright © Royal Aeronautical Society 2010
References
- 6
- Cited by