Published online by Cambridge University Press: 14 March 2019
Within the present publication, the rotor head of a compound helicopter known as Rapid And Cost-Effective Rotorcraft (RACER) is investigated. In particular, the aerodynamic design optimisation of the RACER blade-sleeve fairings (BSFs) is conducted. For this purpose, an isolated rotor head is generated featuring a full-fairing beanie, the BSF and a truncated rotor blade (RB). Moreover, a single RB is investigated at two different azimuthal rotor positions, which correspond to the advancing and the retreating RB case. For this purpose, an averaged circumferential velocity is determined in the blade-sleeve region and superposed with the RACER cruise speed in order to estimate the prevailing flow conditions. The automated aerodynamic design optimisation is performed by means of a previously developed optimisation tool chain. A global multi-objective genetic optimisation algorithm is applied for the given problem. During preliminary work, a 2D aerodynamic design optimisation of selected blade-sleeve sections was conducted. These optimised aerofoils represent the design variables for the current optimisation problem. The shape modification of the 3D fairing is realised by exchanging specific aerofoils at certain spanwise sections.