Hostname: page-component-78c5997874-94fs2 Total loading time: 0 Render date: 2024-11-05T08:11:29.372Z Has data issue: false hasContentIssue false

A parametric study of the aeroelastic stability of a binary wing-with-engine nacelle flutter system in incompressible flow

Published online by Cambridge University Press:  04 July 2016

H. Försching
Affiliation:
Institut für Aeroelastik, DLR Göttingen, Germany
A. Senft
Affiliation:
Institut für Aeroelastik, DLR Göttingen, Germany

Summary

A systematic parametric investigation of the flutter behaviour of a binary wing-with-engine nacelle system in inviscid incompressible flow is performed. The equations of motion in coupled bending and torsion are initially set up and the aerodynamic model for the calculation of the motion-induced unsteady airloads is described. The aeroelastic stability equations are then derived in non-dimensional form and the procedure used for the numerical solution of these equations is outlined. For a typical large commercial aircraft configuration, numerical results are presented for a variety of systematic parameter variations with special emphasis on the effects of the location of the elastic axis and the motion-induced unsteady airloads on the engine nacelle.

Type
Research Article
Copyright
Copyright © Royal Aeronautical Society 1991 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Prof. Dr.-Ing H. Försching and Dipl.-Ing. A. Senft, Institut für Aeroelastik der Deutschen Forschungsanstalt für Luft- und Raumfahrt, Forschungszentrum Gottingen, Bunsenstraβe 10, D-3400 Göttingen, FRG.

References

1. Zimmerman, H. and Vogel, S. Influence of Main Design Parameters on Flutter Behaviour for Aircraft Configurations with Heavy Concentrated Masses. AGARD-CP-354, 1983, pp 6–1 to 6-11.Google Scholar
2. Angelini, J., Chopin, S. and Destuynder, R. Forces aérodynamiques instationnaires induites pur les vibrations aéroélasti- ques d'un réacteur en nacelle, Recherche Aérospatiale, 1974, (4), pp 209219.Google Scholar
3. Haberland, C., Göde, E. and Sauer, G. Calculation of the FlowFieldAroundEngine-WingConfigurations. ICAS-Proceedings, 1980, Paper 80-4.1, pp 144157.Google Scholar
4. Katzer, E. Numerical Analysis of Unsteady Aerodynamic Forces on Oscillating Ring Airfoils and Jet Engines. Proc.Europ. Forum on Aeroelasticity and Struct. Dynamics, 1989, DGLR-Bericht 89-01, pp 151158. See also: DFVLR-FB 89-13, 1989.Google Scholar
5. Send, W. Unsteady Lift and Moment Coefficients on an Engine Nacelle. Proc. Europ. Forum on Aeroelasticity and Struct. Dynamics, 1989, DGLR-Bericht 89-01, pp 159168.Google Scholar
6. Sheu, M. J. and Hancock, G. J. A simplified model for external loading on an engine nacelle enclosing an engine. Part I: For the nacelle at a steady incidence. Part II: For the nacelle in oscillating motion. Aeronaut J, 1984, 88, (880), pp 431446.Google Scholar
7. Triebstein, H. and Schewe, G. Measurement of the Unsteady Aerodynamics of an Engine and a Wing/Engine Combination Including Jet Simulation. ICAS-Proceedings, 1990, Paper 90- 3.1.1, pp 5161.Google Scholar
8. Försching, H. and Von Diest, K. Flutter stability of annular wings in incompressible flow, J Fluids Struct, 1991, 5, pp 4767.Google Scholar
9. Küssner, H. G. Zusammenfassender Bericht über den insta-tionarän Auftrieb von Flügeln, Luftfahrtforschung, 1936, 13, pp 410424.Google Scholar
10. Theodorsen, T. and Garrick, I. E. Mechanism of Flutter, A Theoretical and Experimental Investigation of the Flutter Problem. NACA. Report No. 685 1938.Google Scholar