Published online by Cambridge University Press: 27 January 2016
The generation of a fully turbulent boundary layer profile is investigated using analytical and numerical methods over the Reynolds number range 422 ≤ Reθ ≤ 31,000. The numerical method uses a new mixing length blending function. The predictions are validated against reference wind tunnel measurements under zero streamwise pressure gradient. The methods are then tested for low and moderate adverse pressure gradients. Comparison against experiment and DNS data show a good predictive ability under zero pressure gradient and moderate adverse pressure gradient, with both methods providing a complete velocity profile through the viscous sub-layer down to the wall. These methods are useful computational fluid dynamic tools for generating an equilibrium thick turbulent boundary layer at the computational domain inflow.